TY - JOUR
T1 - Multi-axial electro-mechanical testing methodology for highly stretchable freestanding micron-sized structures
AU - Shafqat, S.
AU - Savov, A. M.
AU - Joshi, S.
AU - Dekker, R.
AU - Geers, M.G.D.
AU - Hoefnagels, J.P.M.
PY - 2020/5
Y1 - 2020/5
N2 - Recent advances in MEMS technology have brought forward a new class of high-density stretchable/flexible electronics as well as large displacement MEMS devices. The in-situ electro-mechanical characterization of such devices is challenging since it requires: (i) highly delicate sample handling, (ii) controlled application of large (hundreds of µm) multi-axial displacements to mimic service conditions, (iii) integrated electrical testing and (iv) fast actuation for cyclic testing. Techniques already developed for small-scale testing in literature fall short to meet the combined set of requirements. To this end, a characterization methodology that fulfills all these requirements is developed and presented here. The technique is based on a piezo-driven micro-tensile stage, which provides large multi-axial displacements with high resolution and fast actuation (4000 µm/s). This is combined with a method for sample microfabrication on a test-chip to warrant delicate sample handling. Proof-of-principle experiments are shown for multi-axial mechanical characterization, electrical characterization and high cycle fatigue testing of micron-sized highly stretchable interconnects. Experiments are conducted under in-situ microscopic observation using optical microscopy, scanning electron microscopy, and high-resolution profilometry. The generic platform proposed here can be used for other problems where similar requirements are faced, e.g. other miniaturized, large displacement electro-mechanical applications that are currently being developed.
AB - Recent advances in MEMS technology have brought forward a new class of high-density stretchable/flexible electronics as well as large displacement MEMS devices. The in-situ electro-mechanical characterization of such devices is challenging since it requires: (i) highly delicate sample handling, (ii) controlled application of large (hundreds of µm) multi-axial displacements to mimic service conditions, (iii) integrated electrical testing and (iv) fast actuation for cyclic testing. Techniques already developed for small-scale testing in literature fall short to meet the combined set of requirements. To this end, a characterization methodology that fulfills all these requirements is developed and presented here. The technique is based on a piezo-driven micro-tensile stage, which provides large multi-axial displacements with high resolution and fast actuation (4000 µm/s). This is combined with a method for sample microfabrication on a test-chip to warrant delicate sample handling. Proof-of-principle experiments are shown for multi-axial mechanical characterization, electrical characterization and high cycle fatigue testing of micron-sized highly stretchable interconnects. Experiments are conducted under in-situ microscopic observation using optical microscopy, scanning electron microscopy, and high-resolution profilometry. The generic platform proposed here can be used for other problems where similar requirements are faced, e.g. other miniaturized, large displacement electro-mechanical applications that are currently being developed.
UR - http://www.scopus.com/inward/record.url?scp=85084486211&partnerID=8YFLogxK
U2 - 10.1088/1361-6439/ab748f
DO - 10.1088/1361-6439/ab748f
M3 - Article
AN - SCOPUS:85084486211
SN - 0960-1317
VL - 30
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 5
M1 - 055002
ER -