TY - JOUR
T1 - Motion of a sphere through a polymer solution
AU - Fan, T.H.
AU - Dhont, J.K.G.
AU - Tuinier, R.
PY - 2007
Y1 - 2007
N2 - We present analytical solutions of the hydrodynamic resistance force a spherical particle experiences when it moves through a polymer solution containing nonadsorbing chains. Polymer depletion results in a reduced polymer concentration and fluid viscosity near the particle surface. The nonuniform physical properties in the fluid phase affect the transport behavior of a translating and rotating sphere as compared with the case of uniform properties. Based on Stokes’ stream function theory, we develop a simplified two-layer approximation by using a step function to represent the viscosity profile. The presence of the polymer solution is formulated in terms of correction functions to the translational and rotational friction of a sphere in a pure solvent. The results are in fair agreement with systematic measurements of the friction of a colloidal sphere when it moves through a polymer solution. The analysis also predicts an apparent slip length in terms of the viscosity ratio and thickness of the depletion layer.
AB - We present analytical solutions of the hydrodynamic resistance force a spherical particle experiences when it moves through a polymer solution containing nonadsorbing chains. Polymer depletion results in a reduced polymer concentration and fluid viscosity near the particle surface. The nonuniform physical properties in the fluid phase affect the transport behavior of a translating and rotating sphere as compared with the case of uniform properties. Based on Stokes’ stream function theory, we develop a simplified two-layer approximation by using a step function to represent the viscosity profile. The presence of the polymer solution is formulated in terms of correction functions to the translational and rotational friction of a sphere in a pure solvent. The results are in fair agreement with systematic measurements of the friction of a colloidal sphere when it moves through a polymer solution. The analysis also predicts an apparent slip length in terms of the viscosity ratio and thickness of the depletion layer.
UR - http://www.scopus.com/inward/record.url?scp=33846551753&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.75.011803
DO - 10.1103/PhysRevE.75.011803
M3 - Article
C2 - 17358176
AN - SCOPUS:33846551753
SN - 1539-3755
VL - 75
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 1
M1 - 011803
ER -