Abstract
The method of moments is widely used for the reduction of kinetic equations into fluid models. It consists in extracting the moments of the kinetic equation with respect to a velocity variable, but the resulting system is a priori underdetermined and requires a closure relation. In this paper, we adapt the φ-divergence based closure, recently developed for rarefied gases i.e. with a velocity variable describing Rd, to the radiative transfer equation where velocity describes the unit sphere S2. This closure is analyzed and a numerical method to compute it is provided. Eventually, it provides the main desirable properties to the resulting system of moments: Similarly to the entropy minimizing closure (MN), it dissipates an entropy and captures exactly the equilibrium distribution. However, contrarily to MN, it remains computationally tractable even at high order and it relies on an exact quadrature formula which preserves exactly symmetry properties, i.e. it does not trigger ray effects. The purely anisotropic regimes (beams) are not captured exactly but they can be approached as close as desired and the closures remains again tractable in this limit.
Original language | English |
---|---|
Article number | 116454 |
Number of pages | 26 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Volume | 417 |
Issue number | Part A. |
DOIs | |
Publication status | Published - 1 Dec 2023 |
Funding
Zhenning Cai was supported by the Academic Research Fund of the Ministry of Education of Singapore under grant No. A-0004592-00-00 .
Keywords
- Method of moments
- Radiative transfer equation
- φ-divergence