TY - JOUR
T1 - Molecular aspects of the formation of shish-kebab in isotactic polypropylene
AU - Balzano, L.
AU - Ma, Z.
AU - Cavallo, D.
AU - van Erp, T.B.
AU - Fernandez-Ballester, L.
AU - Peters, G.W.M.
PY - 2016/5/9
Y1 - 2016/5/9
N2 - To elucidate the mechanism of formation of shish-kebab, flow-induced crystallization of isotactic polypropylene is investigated using model slit-flow experiments in combination with in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The results, consistent with nucleation and growth theory, show that a brief but intense pulse of shear is sufficient to trigger structure formation, even at temperatures as high as 165 °C, i.e., close to the nominal melting point of the material, 163 °C. Working at such a high temperature allows for a clear separation of the nucleation step, taking place during flow, and the growth step, taking place after flow ceases. A small degree of crystallinity stabilizes the fibrillar crystallization precursors, formed in the early stages, and prevents them from dissolving by allowing the molecules involved to retain a stretched conformation. The stretched molecular configuration is essential for further crystallization in this high temperature range. A kinetic analysis indicates that crystallization within the fibrillar shish is based on the unidirectional propagation of a growth front, whereas in a later stage when kebab crystallizes, a bidimensional growth front is observed and the space is rapidly filled until impingement occurs. The lateral dimensions of shish-kebab (as obtained from SAXS analysis) indicate that shish occupy only a small fraction (∼7%) of the volume. Moreover, the lateral growth rate of the kebabs is an order of magnitude larger than expected from quiescent spherulitical growth.
AB - To elucidate the mechanism of formation of shish-kebab, flow-induced crystallization of isotactic polypropylene is investigated using model slit-flow experiments in combination with in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The results, consistent with nucleation and growth theory, show that a brief but intense pulse of shear is sufficient to trigger structure formation, even at temperatures as high as 165 °C, i.e., close to the nominal melting point of the material, 163 °C. Working at such a high temperature allows for a clear separation of the nucleation step, taking place during flow, and the growth step, taking place after flow ceases. A small degree of crystallinity stabilizes the fibrillar crystallization precursors, formed in the early stages, and prevents them from dissolving by allowing the molecules involved to retain a stretched conformation. The stretched molecular configuration is essential for further crystallization in this high temperature range. A kinetic analysis indicates that crystallization within the fibrillar shish is based on the unidirectional propagation of a growth front, whereas in a later stage when kebab crystallizes, a bidimensional growth front is observed and the space is rapidly filled until impingement occurs. The lateral dimensions of shish-kebab (as obtained from SAXS analysis) indicate that shish occupy only a small fraction (∼7%) of the volume. Moreover, the lateral growth rate of the kebabs is an order of magnitude larger than expected from quiescent spherulitical growth.
KW - shish-kebab
KW - Flow Induced Crystallisation
KW - WAXD
KW - SAXS
U2 - 10.1021/acs.macromol.6b00428
DO - 10.1021/acs.macromol.6b00428
M3 - Article
SN - 0024-9297
VL - 49
SP - 3799
EP - 3809
JO - Macromolecules
JF - Macromolecules
IS - 10
ER -