Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles: from aqueous catalysis to photosensitization

Y. Liu, Th. Pauloehrl, S.I. Presolski, L. Albertazzi, A.R.A. Palmans, E.W. Meijer

Research output: Contribution to journalArticleAcademicpeer-review

65 Citations (Scopus)
237 Downloads (Pure)

Abstract

Single-chain polymeric nanoparticles (SCPNs) are intriguing systems for multiple applications. In order to arrive at a controlled, but random, positioning of the different side groups to the polymer backbone, alternative synthetic routes have to be developed. Here, a general postpolymerization modification strategy of poly(pentafluorophenyl acrylate) (pPFPA) is presented as a versatile method to rapidly access functional SCPNs. We first show that the sequential addition of a benzene-1,3,5-tricarboxamide-based amine, acting as the supramolecular recognition motif, and water-soluble polyetheramine (Jeffamine) to pPFPA affords random copolymers that fold in water into SCPNs. The scope of the modular platform is illustrated by preparing two types of functional SCPNs. First, we prepared SCPNs designed for bio-orthogonal catalysis by attaching pendant mono(benzimidazoylmethyl)-bis(pyridylmethyl) (Bimpy), phenanthroline (Phen), or 2,2′-bipyridine (BiPy), ligands capable of binding either Cu(I) or Pd(II). The Bimpy- and Phen-containing SCPNs ligated to Cu(I) significantly accelerate azide-alkyne cycloaddition reactions while Bipy-containing SCPNs ligated to Pd(II) efficiently catalyze depropargylation reactions. In all cases, reactions proceeded efficiently in phosphate buffer at a physiological pH and at low substrate concentrations. Next, the potential of SCPNs for photodynamic therapy was evaluated. Introducing porphyrins in SCPNs leads to novel photosensitizers that can produce singlet oxygen (1O2) upon photoirradiation. Additionally, by attaching both porphyrins and prodrug models, attached via 1O2-cleavable amino-acrylate linker, to the SCPNs, we show that irradiation of the SCPNs results in a cascade reaction of 1O2 generation followed by cleavage of the amino-acrylate linkers, releasing the drug model. The modular synthesis strategy reported here provides rapid and controlled access to SCPNs with tunable amounts of active units that fulfill different functions.

Original languageEnglish
Pages (from-to)13096-13105
Number of pages10
JournalJournal of the American Chemical Society
Volume137
Issue number40
DOIs
Publication statusPublished - 14 Oct 2015

Fingerprint Dive into the research topics of 'Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles: from aqueous catalysis to photosensitization'. Together they form a unique fingerprint.

Cite this