### Abstract

Language | English |
---|---|

Title of host publication | Modeling and Simulation of Turbulent Combustion |

Editors | Santanu De, Avinash Kumar Agarwal, Swetaprovo Chaudhuri, Swarnendu Sen |

Place of Publication | Dordrecht |

Publisher | Springer |

Chapter | 7 |

Pages | 241-265 |

ISBN (Electronic) | 978-981-10-7410-3 |

ISBN (Print) | 978-981-10-7409-7 |

DOIs | |

State | Published - 2018 |

### Publication series

Name | Energy, Environment, and Sustainability book series (ENENSU) |
---|

### Fingerprint

### Cite this

*Modeling and Simulation of Turbulent Combustion*(pp. 241-265). (Energy, Environment, and Sustainability book series (ENENSU)). Dordrecht: Springer. DOI: 10.1007/978-981-10-7410-3_7

}

*Modeling and Simulation of Turbulent Combustion.*Energy, Environment, and Sustainability book series (ENENSU), Springer, Dordrecht, pp. 241-265. DOI: 10.1007/978-981-10-7410-3_7

**Modeling of turbulent premixed flames using flamelet-generated manifolds.** / van Oijen, J.A.

Research output: Chapter in Book/Report/Conference proceeding › Chapter › Academic › peer-review

TY - CHAP

T1 - Modeling of turbulent premixed flames using flamelet-generated manifolds

AU - van Oijen,J.A.

PY - 2018

Y1 - 2018

N2 - Efficient and reliable numerical models have become important tools in the design and optimization process of modern combustion equipment. For accurate predictions of flame stability and pollutant emissions, the use of detailed comprehensive chemical models is required. This accuracy, unfortunately, comes at a very high computational cost. The flamelet-generated manifold (FGM) method is a chemical reduction technique which lowers this burden drastically, but retains most of the accuracy of the comprehensive model. In this chapter, the theoretical background of FGM is briefly reviewed. Its application in simulations of premixed and partially premixed flames is explained. Extra attention is given to the modeling of preferential diffusion effects that arise in lean premixed methane–hydrogen–air flames. The effect of preferential diffusion on the burning velocity of stretched flames is investigated and it is shown how these effects can be included in the FGM method. The impact of preferential diffusion on flame structure and turbulent flame speed is analyzed in direct numerical simulations of premixed turbulent flames. Finally, the application of FGM in large-eddy simulations is briefly reviewed.

AB - Efficient and reliable numerical models have become important tools in the design and optimization process of modern combustion equipment. For accurate predictions of flame stability and pollutant emissions, the use of detailed comprehensive chemical models is required. This accuracy, unfortunately, comes at a very high computational cost. The flamelet-generated manifold (FGM) method is a chemical reduction technique which lowers this burden drastically, but retains most of the accuracy of the comprehensive model. In this chapter, the theoretical background of FGM is briefly reviewed. Its application in simulations of premixed and partially premixed flames is explained. Extra attention is given to the modeling of preferential diffusion effects that arise in lean premixed methane–hydrogen–air flames. The effect of preferential diffusion on the burning velocity of stretched flames is investigated and it is shown how these effects can be included in the FGM method. The impact of preferential diffusion on flame structure and turbulent flame speed is analyzed in direct numerical simulations of premixed turbulent flames. Finally, the application of FGM in large-eddy simulations is briefly reviewed.

U2 - 10.1007/978-981-10-7410-3_7

DO - 10.1007/978-981-10-7410-3_7

M3 - Chapter

SN - 978-981-10-7409-7

T3 - Energy, Environment, and Sustainability book series (ENENSU)

SP - 241

EP - 265

BT - Modeling and Simulation of Turbulent Combustion

PB - Springer

CY - Dordrecht

ER -