Model order reduction of large scale ODE systems: MOR for ANSYS versus ROM Workbench

A.J. Vollebregt, T. Bechtold, A. Verhoeven, E.J.W. Maten, ter

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

In this paper we compare the numerical results obtained by different model order reduction software tools, in order to test their scalability for relevant problems of the microelectronic-industry. MOR for ANSYS is implemented in C++ and ROMWorkbench is a MATLAB code.We further compare two Arnoldi-based reduction algorithms, which seems to be the most promising for microsystem design applications. The chosen benchmarks are large scale linear ODE systems, which arise from the finite element discretisation of electro-thermal MEMS models.
Original languageEnglish
Title of host publicationProceedings of the 6th International Conference on Scientific Computing in Electrical Engineering (SCEE 2006) 17-22 September 2006, Sinaia, Romania
EditorsG. Ciuprina, D. Ioan
Place of PublicationBerlin
PublisherSpringer
Pages175-182
ISBN (Print)978-3-540-71979-3
DOIs
Publication statusPublished - 2007
Eventconference; SCEE 2006, Sinaia, Romania; 2006-09-17; 2006-09-22 -
Duration: 17 Sep 200622 Sep 2006

Publication series

NameMathematics in Industry
Volume11
ISSN (Print)1612-3956

Conference

Conferenceconference; SCEE 2006, Sinaia, Romania; 2006-09-17; 2006-09-22
Period17/09/0622/09/06
OtherSCEE 2006, Sinaia, Romania

Fingerprint Dive into the research topics of 'Model order reduction of large scale ODE systems: MOR for ANSYS versus ROM Workbench'. Together they form a unique fingerprint.

  • Cite this

    Vollebregt, A. J., Bechtold, T., Verhoeven, A., & Maten, ter, E. J. W. (2007). Model order reduction of large scale ODE systems: MOR for ANSYS versus ROM Workbench. In G. Ciuprina, & D. Ioan (Eds.), Proceedings of the 6th International Conference on Scientific Computing in Electrical Engineering (SCEE 2006) 17-22 September 2006, Sinaia, Romania (pp. 175-182). (Mathematics in Industry; Vol. 11). Springer. https://doi.org/10.1007/978-3-540-71980-9_17