Model order reduction for nonlinear differential algebraic equations in circuit simulation

T. Voss, A. Verhoeven, T. Bechtold, E.J.W. Maten, ter

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

In this paper we demonstrate model order reduction of a nonlinear academic model of a diode chain. Two reduction methods, which are suitable for nonlinear differential algebraic equation systems are used, the trajectory piecewise linear approach and the proper orthogonal decomposition with missing point estimation.
Original languageEnglish
Title of host publicationProgress in Industrial Mathematics at ECMI 2006 (Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14, 2006)
EditorsL.L. Bonilla, M. Moscoso, G. Platero, J.M. Vega
Place of PublicationBerlin
PublisherSpringer
Pages518-523
ISBN (Print)978-3-540-71991-5
DOIs
Publication statusPublished - 2008

Publication series

NameMathematics in Industry
Volume12
ISSN (Print)1612-3956

Fingerprint Dive into the research topics of 'Model order reduction for nonlinear differential algebraic equations in circuit simulation'. Together they form a unique fingerprint.

  • Cite this

    Voss, T., Verhoeven, A., Bechtold, T., & Maten, ter, E. J. W. (2008). Model order reduction for nonlinear differential algebraic equations in circuit simulation. In L. L. Bonilla, M. Moscoso, G. Platero, & J. M. Vega (Eds.), Progress in Industrial Mathematics at ECMI 2006 (Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14, 2006) (pp. 518-523). (Mathematics in Industry; Vol. 12). Springer. https://doi.org/10.1007/978-3-540-71992-2_81