Mixed hybrid finite elements and streamline computation for the potential flow problem

E.F. Kaasschieter, A.J.M. Huijben

Research output: Contribution to journalArticleAcademicpeer-review

53 Citations (Scopus)
1 Downloads (Pure)

Abstract

An important class of problems in mathematical physics involves equations of the form -¿ · (A¿¿) = f. In a variety of problems it is desirable to obtain an accurate approximation of the flow quantity u = -A¿¿. Such an accurate approximation can be determined by the mixed finite element method. In this article the lowest-order mixed method is discussed in detail. The mixed finite element method results in a large system of linear equations with an indefinite coefficient matrix. This drawback can be circumvented by the hybridization technique, which leads to a symmetric positive-definite system. This system can be solved efficiently by the preconditioned conjugate gradient method. After approximating u by the lowest-order mixed finite element method, streamlines and residence times can be determined easily and accurately by computations at the element level.
Original languageEnglish
Pages (from-to)221-266
Number of pages46
JournalNumerical Methods for Partial Differential Equations
Volume8
Issue number3
DOIs
Publication statusPublished - 1992

Fingerprint

Dive into the research topics of 'Mixed hybrid finite elements and streamline computation for the potential flow problem'. Together they form a unique fingerprint.

Cite this