TY - JOUR
T1 - Min-max model predictive control of nonlinear systems : a unifying overview on stability
AU - Raimondo, D.M.
AU - Limon, D.
AU - Lazar, M.
AU - Magni, L.
AU - Camacho, E.F.
PY - 2009
Y1 - 2009
N2 - Min-max model predictive control (MPC) is one of the few techniques suitable for robust stabilization of uncertain nonlinear systems subject to constraints. Stability issues as
well as robustness have been recently studied and some novel contributions on this topic have appeared in the literature. In this survey, we distill from an extensive literature a general framework for synthesizing min-max MPC schemes with an a priori robust stability guarantee.
First, we introduce a general prediction model that covers a wide class of uncertainties, which includes bounded disturbances as well as state and input dependent
disturbances (uncertainties). Second, we extend the notion of regional input-to-state stability (ISS) in order to fit the considered class of uncertainties. Then, we establish that
the standard min-max approach can only guarantee practical stability. We concentrate our attention on two different solutions for solving this problem. The first one is based on a particular design of the stage cost of the performance index, which leads to a Hoo strategy, while the second one is based on a dual-mode strategy. Under fairly
mild assumptions both controllers guarantee ISS of the resulting closed-loop system. Moreover, it is shown that the nonlinear auxiliary control law introduced in [29] to solve
the H8 problem can be used,for nonlinear systems affine incontrol, in all the proposed min-max schemes and also in presence of state-independent disturbances. A simulation example illustrates the techniques surveyed in this article.
.
AB - Min-max model predictive control (MPC) is one of the few techniques suitable for robust stabilization of uncertain nonlinear systems subject to constraints. Stability issues as
well as robustness have been recently studied and some novel contributions on this topic have appeared in the literature. In this survey, we distill from an extensive literature a general framework for synthesizing min-max MPC schemes with an a priori robust stability guarantee.
First, we introduce a general prediction model that covers a wide class of uncertainties, which includes bounded disturbances as well as state and input dependent
disturbances (uncertainties). Second, we extend the notion of regional input-to-state stability (ISS) in order to fit the considered class of uncertainties. Then, we establish that
the standard min-max approach can only guarantee practical stability. We concentrate our attention on two different solutions for solving this problem. The first one is based on a particular design of the stage cost of the performance index, which leads to a Hoo strategy, while the second one is based on a dual-mode strategy. Under fairly
mild assumptions both controllers guarantee ISS of the resulting closed-loop system. Moreover, it is shown that the nonlinear auxiliary control law introduced in [29] to solve
the H8 problem can be used,for nonlinear systems affine incontrol, in all the proposed min-max schemes and also in presence of state-independent disturbances. A simulation example illustrates the techniques surveyed in this article.
.
U2 - 10.3166/EJC.15.5-21
DO - 10.3166/EJC.15.5-21
M3 - Article
SN - 0947-3580
VL - 15
SP - 5
EP - 21
JO - European Journal of Control
JF - European Journal of Control
IS - 1
ER -