Mimetic spectral element method for anisotropic diffusion

Marc Gerritsma, Artur Palha, Varun Jain, Yi Zhang

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

4 Citations (Scopus)

Abstract

This chapter addresses the topological structure of steady, anisotropic, inhomogeneous diffusion problems. Differential operators are represented by sparse incidence matrices, while weighted mass matrices play the role of metric-dependent Hodge matrices. The resulting mixed formulation is point-wise divergence-free if the right hand side function f = 0. The method is inf-sup stable; no stabilization is required and the method displays optimal convergence on orthogonal and deformed grids.

Original languageEnglish
Title of host publicationSEMA SIMAI Springer Series
EditorsD. Di Pietro, A. Ern, L. Formaggia
Place of PublicationCham
PublisherSpringer
Chapter3
Pages31-74
Number of pages44
ISBN (Electronic)978-3-319-94676-4
ISBN (Print)978-3-319-94675-7
DOIs
Publication statusPublished - 1 Oct 2018

Publication series

NameSEMA SIMAI Springer Series
Volume15
ISSN (Print)2199-3041
ISSN (Electronic)2199-305X

Fingerprint Dive into the research topics of 'Mimetic spectral element method for anisotropic diffusion'. Together they form a unique fingerprint.

Cite this