Microvascular resistance is not influenced by epicardial coronary artery stenosis severity : experimental validation

W.F. Fearon, W.H. Aarnoudse, N.H.J. Pijls, B. Bruyne, de, L.B. Balsam, D.T. Cooke, R.C. Robbins, P.J. Fitzgerald, A.C. Yeung, P.G. Yock

Research output: Contribution to journalArticleAcademicpeer-review

141 Citations (Scopus)

Abstract

Background— The effect of epicardial artery stenosis on myocardial microvascular resistance remains controversial. Recruitable collateral flow, which may affect resistance, was not incorporated into previous measurements. Methods and Results— In an open-chest pig model, distal coronary pressure was measured with a pressure wire, and the apparent minimal microvascular resistance was calculated during peak hyperemia as pressure divided by flow, measured either with a flow probe around the coronary artery (Rmicro app) or with a novel thermodilution technique (apparent index of microcirculatory resistance [IMRapp]). These apparent resistances were compared with the actual Rmicro and IMR after the coronary wedge pressure and collateral flow were incorporated into the calculation. Measurements were made at baseline (no stenosis) and after creation of moderate and severe epicardial artery stenoses. In 6 pigs, 189 measurements of Rmicro and IMR were made under the various epicardial artery conditions. Without consideration of collateral flow, Rmicro app (0.43±0.12 to 0.46±0.10 to 0.51±0.11 mm Hg/mL per minute) and IMRapp (14±4 to 17±7 to 20±10 U) increased progressively and significantly with increasing epicardial artery stenosis (P
Original languageEnglish
Pages (from-to)2269-2272
JournalCirculation
Volume109
Issue number19
DOIs
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'Microvascular resistance is not influenced by epicardial coronary artery stenosis severity : experimental validation'. Together they form a unique fingerprint.

Cite this