TY - JOUR
T1 - Measuring time-dependent deformations in metallic MEMS
AU - Bergers, L.I.J.C.
AU - Hoefnagels, J.P.M.
AU - Delhey, N.K.R.
AU - Geers, M.G.D.
PY - 2011
Y1 - 2011
N2 - The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these size-effects in time-dependent deformation, a purely mechanical experimental methodology has been developed, which is presented here. The methodology entails the application of a constant deflection to a lm-sized free-standing aluminum-alloy cantilever beam for a prolonged period of time. After this load is removed, the deformation evolution is immediately recorded by acquiring surface topographies through confocal optical profilometry. Image correlation and an algorithm based on elastic beam theory are applied to the full-field beam profiles to correct drift and improve limited optical profilometry precision, yielding the tip deflection as function of time with a precision of 7% of the surface roughness. A proof-of-principle measurement reveals a remarkable time-dependent deflection recovery. Assumptions and errors of the methodology are analyzed. Finally, it is concluded that the methodology is most suitable for the investigation of creep due to the simplicity of specimen handling, preparation and setup design, while maximizing long term stability and deformation precision.
AB - The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these size-effects in time-dependent deformation, a purely mechanical experimental methodology has been developed, which is presented here. The methodology entails the application of a constant deflection to a lm-sized free-standing aluminum-alloy cantilever beam for a prolonged period of time. After this load is removed, the deformation evolution is immediately recorded by acquiring surface topographies through confocal optical profilometry. Image correlation and an algorithm based on elastic beam theory are applied to the full-field beam profiles to correct drift and improve limited optical profilometry precision, yielding the tip deflection as function of time with a precision of 7% of the surface roughness. A proof-of-principle measurement reveals a remarkable time-dependent deflection recovery. Assumptions and errors of the methodology are analyzed. Finally, it is concluded that the methodology is most suitable for the investigation of creep due to the simplicity of specimen handling, preparation and setup design, while maximizing long term stability and deformation precision.
U2 - 10.1016/j.microrel.2011.03.008
DO - 10.1016/j.microrel.2011.03.008
M3 - Article
SN - 0026-2714
VL - 51
SP - 1054
EP - 1059
JO - Microelectronics Reliability
JF - Microelectronics Reliability
IS - 6
ER -