Maximal cocliques in the Kneser graph on point-plane flags in PG(4,q)

A. Blokhuis, A.E. Brouwer, T.I. Szonyi

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)

Abstract

We determine the maximal cocliques of size = 5q^2 + 5q + 2 in the Kneser graph on point–plane flags in PG(4,q). The maximal size of a coclique in this graph is (q^2 + q + 1)(q^3 + q^2 + q + 1)(q^2 + q + 1).
Original languageEnglish
Pages (from-to)95-104
JournalEuropean Journal of Combinatorics
Volume35
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Maximal cocliques in the Kneser graph on point-plane flags in PG(4,q)'. Together they form a unique fingerprint.

Cite this