Magnon-mediated indirect exciton condensation through antiferromagnetic insulators

Øyvind Johansen (Corresponding author), Akashdeep Kamra, Camilo Ulloa, Arne Brataas, Rembert A. Duine

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)
127 Downloads (Pure)

Abstract

Electrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally interact via interfacial coupling to the antiferromagnetic magnons. We show that by employing magnetically uncompensated interfaces, we can design the magnon-mediated interaction to be attractive or repulsive by varying the thickness of the antiferromagnetic insulator by a single atomic layer. We derive an analytical expression for the critical temperature Tc of the indirect exciton condensation. Within our model, anisotropy is found to be crucial for achieving a finite Tc, which increases with the strength of the exchange interaction in the antiferromagnetic bulk. For realistic material parameters, we estimate Tc to be around 7 K, the same order of magnitude as the current experimentally achievable exciton condensation where the attraction is solely due to the Coulomb interaction. The magnon-mediated interaction is expected to cooperate with the Coulomb interaction for condensation of indirect excitons, thereby providing a means to significantly increase the exciton condensation temperature range.

Original languageEnglish
Article number167203
Number of pages7
JournalPhysical Review Letters
Volume123
Issue number16
DOIs
Publication statusPublished - 18 Oct 2019

Fingerprint

Dive into the research topics of 'Magnon-mediated indirect exciton condensation through antiferromagnetic insulators'. Together they form a unique fingerprint.

Cite this