Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar Perovskite solar cells

Y. Kuang, V. Zardetto, R.J. van Gils, S. Karwal, D. Koushik, M.A. Verheijen, L.E. Black, C.H.L. Weijtens, Sjoerd C. Veenstra, H.A.J.M. (Ronn) Andriessen, W.M.M. Kessels, M. Creatore

Research output: Contribution to journalArticleAcademicpeer-review

72 Citations (SciVal)
819 Downloads (Pure)


In this work, we present an extensive characterization of plasma-assisted atomic-layer-deposited SnO2 layers, with the aim of identifying key material properties of SnO2 to serve as an efficient electron transport layer in perovskite solar cells (PSCs). Electrically resistive SnO2 films are fabricated at 50 °C, while a SnO2 film with a low electrical resistivity of 1.8 × 10−3Ω cm, a carrier density of 9.6 × 1019 cm−3, and a high mobility of 36.0 cm2
/V s is deposited at 200 °C. Ultraviolet photoelectron spectroscopy indicates a conduction band offset of ∼0.69 eV at the 50 °C SnO2/Cs0.05(MA0.17FA0.83)
0.95Pb-(I2.7Br0.3) interface. In contrast, a negligible conduction band offset is found between the 200 °C SnO2 and the perovskite. Surprisingly, comparable initial power conversion efficiencies (PCEs) of 17.5 and 17.8% are demonstrated for the champion cells using 15 nm thick SnO2 deposited at 50 and 200 °C,
respectively. The latter gains in fill factor but loses in open-circuit voltage. Markedly, PSCs using the 200 °C compact SnO2 retain their initial performance at the maximum power point over 16 h under continuous one-sun illumination in inert atmosphere. Instead, the cell with the 50 °C SnO2 shows a decrease in PCE of approximately 50%.
Original languageEnglish
Pages (from-to)30367-30378
Number of pages12
JournalACS Applied Materials & Interfaces
Issue number36
Early online date16 Aug 2018
Publication statusPublished - 12 Sept 2018


  • atomic layer deposition
  • inorganic electron transport layer
  • interface
  • perovskite solar cells
  • stability
  • tin oxide


Dive into the research topics of 'Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar Perovskite solar cells'. Together they form a unique fingerprint.

Cite this