Low-temperature fuel cells operating with contaminated feedstock

P.J.H. Wingelaar

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)Academic

Abstract

This work concerns the analysis and modeling of the dynamic and static behavior of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fundamentally different measurement methods are used to determine the static, the large-signal, and the small-signal dynamic behavior of a fuel cell system. By combining the results of the three types of measurements, a joint dynamic and static (or dynastatic) model of the fuel cell is proposed. This model covers all three operational states of the fuel cell, while keeping close to the electrochemical aspects of the system. The dynastatic model describes the electrical behavior of the fuel cell to within 5%. The remaining part of this study is concerned with the integration of biomass energy generation systems together with fuel cells with the aim to convert biogas to electricity. With the conversion of biomass to hydrogen rich gas, polluting gasses (from the viewpoint of the fuel cell) are released. One of the major pollutions for the PEM fuel cell platinum catalyst is carbon monoxide (CO). Trace amounts of this gas, as low as 30 ppm, are responsible for lower output voltages of PEM fuel cells. This phenomenon is called CO-poisoning, and is related to the adsorption of CO to the platinum catalysts. To cope with this pollution, this work introduces an electrical regeneration procedure. The regeneration is done by pulsing the CO-poisoned cells with negative voltage, in order to electro-oxidize the adsorbed CO to carbon dioxide (CO2). In this way, carbon dioxide will disconnect itself from the platinum catalyst, making the occupied position free for the hydrogen reaction. Measurements show that the electrical regeneration of the PEM fuel cell is effective for gas mixtures containing up to 100 ppm CO. Compared with the same fuel cell operating with pure hydrogen, the regeneration method consumes only 2% of the produced electrical energy. This kind of performance has not been previously reported for fuel cell stacks with pure platinum catalysts. This study shows that the behavior of the individual cells in a fuel cell series stack differs as a consequence of a cell’s electrical position within the stack. It is demonstrated that the cells at the higher potential position in the stack can be electrically regenerated, while the cells in the lower potential position can not. It is also observed that the cell at the highest potential position in a four membrane stack can show "self-oxidizing" behavior in order to electro-oxidize the adsorbed CO to CO2. This self-oxidizing behavior was not reported before in the literature for fuel cells with pure platinum catalysts.
LanguageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Department of Electrical Engineering
Supervisors/Advisors
  • Vandenput, Andre, Promotor
  • Hendrix, Marcel, Copromotor
  • Duarte, Jorge, Copromotor
Award date29 Aug 2007
Place of PublicationEindhoven
Publisher
Print ISBNs978-90-386-1554-7
DOIs
StatePublished - 2007

Fingerprint

Feedstocks
Fuel cells
Carbon monoxide
Platinum
Temperature
Catalysts
Hydrogen
Carbon dioxide
Pollution
Electric potential
Proton exchange membrane fuel cells (PEMFC)
Gases
Gas mixtures
Biomass
Electricity
Cells
Adsorption

Cite this

Wingelaar, P. J. H. (2007). Low-temperature fuel cells operating with contaminated feedstock Eindhoven: Technische Universiteit Eindhoven DOI: 10.6100/IR628828
Wingelaar, P.J.H.. / Low-temperature fuel cells operating with contaminated feedstock. Eindhoven : Technische Universiteit Eindhoven, 2007. 183 p.
@phdthesis{84defa0146914d8abba95ae530668cd2,
title = "Low-temperature fuel cells operating with contaminated feedstock",
abstract = "This work concerns the analysis and modeling of the dynamic and static behavior of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fundamentally different measurement methods are used to determine the static, the large-signal, and the small-signal dynamic behavior of a fuel cell system. By combining the results of the three types of measurements, a joint dynamic and static (or dynastatic) model of the fuel cell is proposed. This model covers all three operational states of the fuel cell, while keeping close to the electrochemical aspects of the system. The dynastatic model describes the electrical behavior of the fuel cell to within 5{\%}. The remaining part of this study is concerned with the integration of biomass energy generation systems together with fuel cells with the aim to convert biogas to electricity. With the conversion of biomass to hydrogen rich gas, polluting gasses (from the viewpoint of the fuel cell) are released. One of the major pollutions for the PEM fuel cell platinum catalyst is carbon monoxide (CO). Trace amounts of this gas, as low as 30 ppm, are responsible for lower output voltages of PEM fuel cells. This phenomenon is called CO-poisoning, and is related to the adsorption of CO to the platinum catalysts. To cope with this pollution, this work introduces an electrical regeneration procedure. The regeneration is done by pulsing the CO-poisoned cells with negative voltage, in order to electro-oxidize the adsorbed CO to carbon dioxide (CO2). In this way, carbon dioxide will disconnect itself from the platinum catalyst, making the occupied position free for the hydrogen reaction. Measurements show that the electrical regeneration of the PEM fuel cell is effective for gas mixtures containing up to 100 ppm CO. Compared with the same fuel cell operating with pure hydrogen, the regeneration method consumes only 2{\%} of the produced electrical energy. This kind of performance has not been previously reported for fuel cell stacks with pure platinum catalysts. This study shows that the behavior of the individual cells in a fuel cell series stack differs as a consequence of a cell’s electrical position within the stack. It is demonstrated that the cells at the higher potential position in the stack can be electrically regenerated, while the cells in the lower potential position can not. It is also observed that the cell at the highest potential position in a four membrane stack can show {"}self-oxidizing{"} behavior in order to electro-oxidize the adsorbed CO to CO2. This self-oxidizing behavior was not reported before in the literature for fuel cells with pure platinum catalysts.",
author = "P.J.H. Wingelaar",
year = "2007",
doi = "10.6100/IR628828",
language = "English",
isbn = "978-90-386-1554-7",
publisher = "Technische Universiteit Eindhoven",
school = "Department of Electrical Engineering",

}

Wingelaar, PJH 2007, 'Low-temperature fuel cells operating with contaminated feedstock', Doctor of Philosophy, Department of Electrical Engineering, Eindhoven. DOI: 10.6100/IR628828

Low-temperature fuel cells operating with contaminated feedstock. / Wingelaar, P.J.H.

Eindhoven : Technische Universiteit Eindhoven, 2007. 183 p.

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)Academic

TY - THES

T1 - Low-temperature fuel cells operating with contaminated feedstock

AU - Wingelaar,P.J.H.

PY - 2007

Y1 - 2007

N2 - This work concerns the analysis and modeling of the dynamic and static behavior of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fundamentally different measurement methods are used to determine the static, the large-signal, and the small-signal dynamic behavior of a fuel cell system. By combining the results of the three types of measurements, a joint dynamic and static (or dynastatic) model of the fuel cell is proposed. This model covers all three operational states of the fuel cell, while keeping close to the electrochemical aspects of the system. The dynastatic model describes the electrical behavior of the fuel cell to within 5%. The remaining part of this study is concerned with the integration of biomass energy generation systems together with fuel cells with the aim to convert biogas to electricity. With the conversion of biomass to hydrogen rich gas, polluting gasses (from the viewpoint of the fuel cell) are released. One of the major pollutions for the PEM fuel cell platinum catalyst is carbon monoxide (CO). Trace amounts of this gas, as low as 30 ppm, are responsible for lower output voltages of PEM fuel cells. This phenomenon is called CO-poisoning, and is related to the adsorption of CO to the platinum catalysts. To cope with this pollution, this work introduces an electrical regeneration procedure. The regeneration is done by pulsing the CO-poisoned cells with negative voltage, in order to electro-oxidize the adsorbed CO to carbon dioxide (CO2). In this way, carbon dioxide will disconnect itself from the platinum catalyst, making the occupied position free for the hydrogen reaction. Measurements show that the electrical regeneration of the PEM fuel cell is effective for gas mixtures containing up to 100 ppm CO. Compared with the same fuel cell operating with pure hydrogen, the regeneration method consumes only 2% of the produced electrical energy. This kind of performance has not been previously reported for fuel cell stacks with pure platinum catalysts. This study shows that the behavior of the individual cells in a fuel cell series stack differs as a consequence of a cell’s electrical position within the stack. It is demonstrated that the cells at the higher potential position in the stack can be electrically regenerated, while the cells in the lower potential position can not. It is also observed that the cell at the highest potential position in a four membrane stack can show "self-oxidizing" behavior in order to electro-oxidize the adsorbed CO to CO2. This self-oxidizing behavior was not reported before in the literature for fuel cells with pure platinum catalysts.

AB - This work concerns the analysis and modeling of the dynamic and static behavior of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fundamentally different measurement methods are used to determine the static, the large-signal, and the small-signal dynamic behavior of a fuel cell system. By combining the results of the three types of measurements, a joint dynamic and static (or dynastatic) model of the fuel cell is proposed. This model covers all three operational states of the fuel cell, while keeping close to the electrochemical aspects of the system. The dynastatic model describes the electrical behavior of the fuel cell to within 5%. The remaining part of this study is concerned with the integration of biomass energy generation systems together with fuel cells with the aim to convert biogas to electricity. With the conversion of biomass to hydrogen rich gas, polluting gasses (from the viewpoint of the fuel cell) are released. One of the major pollutions for the PEM fuel cell platinum catalyst is carbon monoxide (CO). Trace amounts of this gas, as low as 30 ppm, are responsible for lower output voltages of PEM fuel cells. This phenomenon is called CO-poisoning, and is related to the adsorption of CO to the platinum catalysts. To cope with this pollution, this work introduces an electrical regeneration procedure. The regeneration is done by pulsing the CO-poisoned cells with negative voltage, in order to electro-oxidize the adsorbed CO to carbon dioxide (CO2). In this way, carbon dioxide will disconnect itself from the platinum catalyst, making the occupied position free for the hydrogen reaction. Measurements show that the electrical regeneration of the PEM fuel cell is effective for gas mixtures containing up to 100 ppm CO. Compared with the same fuel cell operating with pure hydrogen, the regeneration method consumes only 2% of the produced electrical energy. This kind of performance has not been previously reported for fuel cell stacks with pure platinum catalysts. This study shows that the behavior of the individual cells in a fuel cell series stack differs as a consequence of a cell’s electrical position within the stack. It is demonstrated that the cells at the higher potential position in the stack can be electrically regenerated, while the cells in the lower potential position can not. It is also observed that the cell at the highest potential position in a four membrane stack can show "self-oxidizing" behavior in order to electro-oxidize the adsorbed CO to CO2. This self-oxidizing behavior was not reported before in the literature for fuel cells with pure platinum catalysts.

U2 - 10.6100/IR628828

DO - 10.6100/IR628828

M3 - Phd Thesis 1 (Research TU/e / Graduation TU/e)

SN - 978-90-386-1554-7

PB - Technische Universiteit Eindhoven

CY - Eindhoven

ER -

Wingelaar PJH. Low-temperature fuel cells operating with contaminated feedstock. Eindhoven: Technische Universiteit Eindhoven, 2007. 183 p. Available from, DOI: 10.6100/IR628828