Abstract
Unexpectedly large amounts of CO adsorption have resulted from a pulse adsorption experiment at 323 K, giving about 300% Pt dispersion in a Pt/cerium-based oxide catalyst. An in situ diffuse reflectance infrared Fourier transform spectroscopic investigation on a Pt/cerium-based oxide during CO adsorption has revealed that carbonate species on the cerium oxide surface are responsible for the unrealistically large CO adsorption at 323 K, as a result of CO spillover. Lowering the temperature to 195 K considerably diminished the amount of CO adsorption. The size of the Pt particles in the Pt/cerium-based oxide catalyst was determined by CO pulse adsorption at 195 K and showed good agreement with the particle size determined by X-ray diffraction and low energy ion scattering. This indicates that CO pulse adsorption at 195 K is a useful technique to reliably estimate the Pt particle size in a Pt/cerium-based oxide catalyst. © 2009 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 108-113 |
Journal | Applied Catalysis. A, General |
Volume | 370 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2009 |