Low density 1.55 μm InAs/InGaAsP/InP (100) quantum dots enabled by an ultrathin GaAs interlayer

P.J. Veldhoven, van, N.J.G. Chauvin, A. Fiore, R. Nötzel

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)
83 Downloads (Pure)

Abstract

The authors report the formation of low density InAs/InGaAsP/InP (100) quantum dots (QDs) by metalorganic vapor phase epitaxy enabled by an ultrathin GaAs interlayer. For small InAs amount and low group-V flow rate, the QD density is reduced to below 10 QDs/µ m2. Increasing the group-V flow rate slightly increases the QD density and shifts the QD emission wavelength into the 1.55 µm telecommunication region. Without GaAs interlayer, the QD density is drastically increased. This is attributed to the suppression of As/P exchange during QD growth by the GaAs interlayer avoiding the formation of excess InAs.
Original languageEnglish
Article number113110
Pages (from-to)113110-1/3
JournalApplied Physics Letters
Volume95
Issue number11
DOIs
Publication statusPublished - 2009

Fingerprint Dive into the research topics of 'Low density 1.55 μm InAs/InGaAsP/InP (100) quantum dots enabled by an ultrathin GaAs interlayer'. Together they form a unique fingerprint.

Cite this