Low-complexity frequency synchronization for wireless OFDM systems

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

212 Downloads (Pure)

Abstract

In the past decade, we have seen a trend in wireless communications from supporting only voice and low-rate data services towards supporting high-rate multimedia applications. To support this high demand on data rate, the bandwidth of modern wireless communication systems is normally in the order of tens of MHz. Because of this large bandwidth, the communication channels between the transmitter and the receiver exhibit different responses at different frequencies, and are called frequency-selective fading channels. The Orthogonal Frequency Division Multiplexing (OFDM) system provides an efficient and robust solution for communication over frequency-selective fading channels and has been adopted in various wireless communication standards. The multiple-input and multiple-out (MIMO) OFDM system further increases the data rates and robustness of the OFDM system by using multiple transmit and receive antennas. The multi-user MIMO-OFDM system is an extension of the MIMO-OFDM system to a multi-user context. It enables transmission and reception of information from multiple users at the same time and in the same frequency band. A common drawback of all these wireless OFDM systems is their sensitivity to frequency synchronization errors in the form of carrier frequency offset (CFO). CFO is an offset between the carrier frequency of the transmitted signal and the carrier frequency used at the receiver for demodulation. It is caused by the mismatch between the transmitter and receiver local oscillators and, in case of moving transmitters and/or receivers, also by the Doppler effect of the channel. In OFDM systems, CFO causes inter-carrier interference (ICI), which can be several orders larger than the noise sources in the system. Thus, accurate CFO estimation, through frequency synchronization, is essential for ensuring adequate performance of OFDM systems. To this end, many CFO estimation and compensation algorithms have been described in the literature for a variety of wireless OFDM systems. These algorithms can be broadly divided into two categories, namely blind algorithms and training-based algorithms. For blind CFO estimation algorithms, CFO is estimated using the statistical properties of the received signal only, without explicit knowledge of the transmitted signal. For training-based CFO estimation algorithms, specially designed training signals known to the receiver are transmitted to assist the receiver in estimating the CFO. A key drawback of blind algorithms is their high computational complexity. In this thesis, we address this drawback by developing a particular type of low-complexity blind CFO estimation algorithms in the context of single-input single-output (SISO) OFDM systems. For training-based algorithms, the computational complexity is normally low because training sequences can be designed to limit the required computations at the receiver. A key drawback of training-based algorithms is the training overhead from the transmission of training sequences, as it reduces the effective data throughput of the system. Comparing to SISO-OFDM systems, the training overhead for MIMO-OFDM systems is even larger. To address this drawback, in this thesis, we propose an efficient training sequence design for MIMO-OFDM systems, which has low training overhead and at the same time permits low-complexity maximum-likelihood joint CFO and channel estimation.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Department of Electrical Engineering
Supervisors/Advisors
  • Bergmans, Jan W.M., Promotor
  • Ko, C.C., Promotor, External person
  • Attallah, Samir, Copromotor, External person
Award date23 Nov 2009
Place of PublicationEindhoven
Publisher
Print ISBNs978-90-386-2068-8
DOIs
Publication statusPublished - 2009

Fingerprint

Orthogonal frequency division multiplexing
Synchronization
Transmitters
Frequency selective fading
Fading channels
Computational complexity
Communication
Bandwidth
Doppler effect
Channel estimation
Demodulation
Maximum likelihood
Frequency bands
Communication systems
Throughput
Antennas

Cite this

Wu, Yan. / Low-complexity frequency synchronization for wireless OFDM systems. Eindhoven : Technische Universiteit Eindhoven, 2009. 176 p.
@phdthesis{6d7a3a68ab3d4892a2577362f8a13961,
title = "Low-complexity frequency synchronization for wireless OFDM systems",
abstract = "In the past decade, we have seen a trend in wireless communications from supporting only voice and low-rate data services towards supporting high-rate multimedia applications. To support this high demand on data rate, the bandwidth of modern wireless communication systems is normally in the order of tens of MHz. Because of this large bandwidth, the communication channels between the transmitter and the receiver exhibit different responses at different frequencies, and are called frequency-selective fading channels. The Orthogonal Frequency Division Multiplexing (OFDM) system provides an efficient and robust solution for communication over frequency-selective fading channels and has been adopted in various wireless communication standards. The multiple-input and multiple-out (MIMO) OFDM system further increases the data rates and robustness of the OFDM system by using multiple transmit and receive antennas. The multi-user MIMO-OFDM system is an extension of the MIMO-OFDM system to a multi-user context. It enables transmission and reception of information from multiple users at the same time and in the same frequency band. A common drawback of all these wireless OFDM systems is their sensitivity to frequency synchronization errors in the form of carrier frequency offset (CFO). CFO is an offset between the carrier frequency of the transmitted signal and the carrier frequency used at the receiver for demodulation. It is caused by the mismatch between the transmitter and receiver local oscillators and, in case of moving transmitters and/or receivers, also by the Doppler effect of the channel. In OFDM systems, CFO causes inter-carrier interference (ICI), which can be several orders larger than the noise sources in the system. Thus, accurate CFO estimation, through frequency synchronization, is essential for ensuring adequate performance of OFDM systems. To this end, many CFO estimation and compensation algorithms have been described in the literature for a variety of wireless OFDM systems. These algorithms can be broadly divided into two categories, namely blind algorithms and training-based algorithms. For blind CFO estimation algorithms, CFO is estimated using the statistical properties of the received signal only, without explicit knowledge of the transmitted signal. For training-based CFO estimation algorithms, specially designed training signals known to the receiver are transmitted to assist the receiver in estimating the CFO. A key drawback of blind algorithms is their high computational complexity. In this thesis, we address this drawback by developing a particular type of low-complexity blind CFO estimation algorithms in the context of single-input single-output (SISO) OFDM systems. For training-based algorithms, the computational complexity is normally low because training sequences can be designed to limit the required computations at the receiver. A key drawback of training-based algorithms is the training overhead from the transmission of training sequences, as it reduces the effective data throughput of the system. Comparing to SISO-OFDM systems, the training overhead for MIMO-OFDM systems is even larger. To address this drawback, in this thesis, we propose an efficient training sequence design for MIMO-OFDM systems, which has low training overhead and at the same time permits low-complexity maximum-likelihood joint CFO and channel estimation.",
author = "Yan Wu",
year = "2009",
doi = "10.6100/IR653286",
language = "English",
isbn = "978-90-386-2068-8",
publisher = "Technische Universiteit Eindhoven",
school = "Department of Electrical Engineering",

}

Wu, Y 2009, 'Low-complexity frequency synchronization for wireless OFDM systems', Doctor of Philosophy, Department of Electrical Engineering, Eindhoven. https://doi.org/10.6100/IR653286

Low-complexity frequency synchronization for wireless OFDM systems. / Wu, Yan.

Eindhoven : Technische Universiteit Eindhoven, 2009. 176 p.

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

TY - THES

T1 - Low-complexity frequency synchronization for wireless OFDM systems

AU - Wu, Yan

PY - 2009

Y1 - 2009

N2 - In the past decade, we have seen a trend in wireless communications from supporting only voice and low-rate data services towards supporting high-rate multimedia applications. To support this high demand on data rate, the bandwidth of modern wireless communication systems is normally in the order of tens of MHz. Because of this large bandwidth, the communication channels between the transmitter and the receiver exhibit different responses at different frequencies, and are called frequency-selective fading channels. The Orthogonal Frequency Division Multiplexing (OFDM) system provides an efficient and robust solution for communication over frequency-selective fading channels and has been adopted in various wireless communication standards. The multiple-input and multiple-out (MIMO) OFDM system further increases the data rates and robustness of the OFDM system by using multiple transmit and receive antennas. The multi-user MIMO-OFDM system is an extension of the MIMO-OFDM system to a multi-user context. It enables transmission and reception of information from multiple users at the same time and in the same frequency band. A common drawback of all these wireless OFDM systems is their sensitivity to frequency synchronization errors in the form of carrier frequency offset (CFO). CFO is an offset between the carrier frequency of the transmitted signal and the carrier frequency used at the receiver for demodulation. It is caused by the mismatch between the transmitter and receiver local oscillators and, in case of moving transmitters and/or receivers, also by the Doppler effect of the channel. In OFDM systems, CFO causes inter-carrier interference (ICI), which can be several orders larger than the noise sources in the system. Thus, accurate CFO estimation, through frequency synchronization, is essential for ensuring adequate performance of OFDM systems. To this end, many CFO estimation and compensation algorithms have been described in the literature for a variety of wireless OFDM systems. These algorithms can be broadly divided into two categories, namely blind algorithms and training-based algorithms. For blind CFO estimation algorithms, CFO is estimated using the statistical properties of the received signal only, without explicit knowledge of the transmitted signal. For training-based CFO estimation algorithms, specially designed training signals known to the receiver are transmitted to assist the receiver in estimating the CFO. A key drawback of blind algorithms is their high computational complexity. In this thesis, we address this drawback by developing a particular type of low-complexity blind CFO estimation algorithms in the context of single-input single-output (SISO) OFDM systems. For training-based algorithms, the computational complexity is normally low because training sequences can be designed to limit the required computations at the receiver. A key drawback of training-based algorithms is the training overhead from the transmission of training sequences, as it reduces the effective data throughput of the system. Comparing to SISO-OFDM systems, the training overhead for MIMO-OFDM systems is even larger. To address this drawback, in this thesis, we propose an efficient training sequence design for MIMO-OFDM systems, which has low training overhead and at the same time permits low-complexity maximum-likelihood joint CFO and channel estimation.

AB - In the past decade, we have seen a trend in wireless communications from supporting only voice and low-rate data services towards supporting high-rate multimedia applications. To support this high demand on data rate, the bandwidth of modern wireless communication systems is normally in the order of tens of MHz. Because of this large bandwidth, the communication channels between the transmitter and the receiver exhibit different responses at different frequencies, and are called frequency-selective fading channels. The Orthogonal Frequency Division Multiplexing (OFDM) system provides an efficient and robust solution for communication over frequency-selective fading channels and has been adopted in various wireless communication standards. The multiple-input and multiple-out (MIMO) OFDM system further increases the data rates and robustness of the OFDM system by using multiple transmit and receive antennas. The multi-user MIMO-OFDM system is an extension of the MIMO-OFDM system to a multi-user context. It enables transmission and reception of information from multiple users at the same time and in the same frequency band. A common drawback of all these wireless OFDM systems is their sensitivity to frequency synchronization errors in the form of carrier frequency offset (CFO). CFO is an offset between the carrier frequency of the transmitted signal and the carrier frequency used at the receiver for demodulation. It is caused by the mismatch between the transmitter and receiver local oscillators and, in case of moving transmitters and/or receivers, also by the Doppler effect of the channel. In OFDM systems, CFO causes inter-carrier interference (ICI), which can be several orders larger than the noise sources in the system. Thus, accurate CFO estimation, through frequency synchronization, is essential for ensuring adequate performance of OFDM systems. To this end, many CFO estimation and compensation algorithms have been described in the literature for a variety of wireless OFDM systems. These algorithms can be broadly divided into two categories, namely blind algorithms and training-based algorithms. For blind CFO estimation algorithms, CFO is estimated using the statistical properties of the received signal only, without explicit knowledge of the transmitted signal. For training-based CFO estimation algorithms, specially designed training signals known to the receiver are transmitted to assist the receiver in estimating the CFO. A key drawback of blind algorithms is their high computational complexity. In this thesis, we address this drawback by developing a particular type of low-complexity blind CFO estimation algorithms in the context of single-input single-output (SISO) OFDM systems. For training-based algorithms, the computational complexity is normally low because training sequences can be designed to limit the required computations at the receiver. A key drawback of training-based algorithms is the training overhead from the transmission of training sequences, as it reduces the effective data throughput of the system. Comparing to SISO-OFDM systems, the training overhead for MIMO-OFDM systems is even larger. To address this drawback, in this thesis, we propose an efficient training sequence design for MIMO-OFDM systems, which has low training overhead and at the same time permits low-complexity maximum-likelihood joint CFO and channel estimation.

U2 - 10.6100/IR653286

DO - 10.6100/IR653286

M3 - Phd Thesis 1 (Research TU/e / Graduation TU/e)

SN - 978-90-386-2068-8

PB - Technische Universiteit Eindhoven

CY - Eindhoven

ER -