TY - JOUR
T1 - Liquid-liquid slug flow: hydrodynamics and pressure drop
AU - Jovanovic, J.
AU - Zhou, W.
AU - Rebrov, E.
AU - Nijhuis, T.A.
AU - Hessel, V.
AU - Schouten, J.C.
PY - 2011
Y1 - 2011
N2 - In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5. m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 µm). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz. the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%. © 2010 Elsevier Ltd.
AB - In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5. m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 µm). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz. the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%. © 2010 Elsevier Ltd.
U2 - 10.1016/j.ces.2010.09.040
DO - 10.1016/j.ces.2010.09.040
M3 - Article
SN - 0009-2509
VL - 66
SP - 42
EP - 54
JO - Chemical Engineering Science
JF - Chemical Engineering Science
IS - 1
ER -