Lipid nanoparticle technology for clinical translation of siRNA therapeutics

Jayesh A. Kulkarni, Dominik Witzigmann, Sam Chen, Pieter R. Cullis (Corresponding author), Roy van der Meel

Research output: Contribution to journalReview articlepeer-review

44 Citations (Scopus)
132 Downloads (Pure)

Abstract

ConspectusDelivering nucleic acid-based therapeutics to cells is an attractive approach to target the genetic cause of various diseases. In contrast to conventional small molecule drugs that target gene products (i.e., proteins), genetic drugs induce therapeutic effects by modulating gene expression. Gene silencing, the process whereby protein production is prevented by neutralizing its mRNA template, is a potent strategy to induce therapeutic effects in a highly precise manner. Importantly, gene silencing has broad potential as theoretically any disease-causing gene can be targeted. It was demonstrated two decades ago that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm results in specific degradation of complementary mRNA via a process called RNA interference (RNAi). Since then, significant efforts and investments have been made to exploit RNAi therapeutically and advance siRNA drugs to the clinic.Utilizing (unmodified) siRNA as a therapeutic, however, is challenging due to its limited bioavailability following systemic administration. Nuclease activity and renal filtration result in siRNA's rapid clearance from the circulation and its administration induces (innate) immune responses. Furthermore, siRNA's unfavorable physicochemical characteristics largely prevent its diffusion across cellular membranes, impeding its ability to reach the cytoplasm where it can engage the RNAi machinery. The clinical translation of siRNA therapeutics has therefore been dependent on chemical modifications and developing sophisticated delivery platforms to improve their stability, limit immune activation, facilitate internalization, and increase target affinity.These developments have resulted in last year's approval of the first siRNA therapeutic, called Onpattro (patisiran), for treatment of hereditary amyloidogenic transthyretin (TTR) amyloidosis. This disease is characterized by a mutation in the gene encoding TTR, a serum protein that transports retinol in circulation following secretion by the liver. The mutation leads to production of misfolded proteins that deposit as amyloid fibrils in multiple organs, resulting in progressive neurodegeneration. Patisiran's therapeutic effect relies on siRNA-mediated TTR gene silencing, preventing mutant protein production and halting or even reversing disease progression. For efficient therapeutic siRNA delivery to hepatocytes, patisiran is critically dependent on lipid nanoparticle (LNP) technology.In this Account, we provide an overview of key advances that have been crucial for developing LNP delivery technology, and we explain how these developments have contributed to the clinical translation of siRNA therapeutics for parenteral administration. We discuss optimization of the LNP formulation, particularly focusing on the rational design of ionizable cationic lipids and poly(ethylene glycol) lipids. These components have proven to be instrumental for highly efficient siRNA encapsulation, favorable LNP pharmacokinetic parameters, and hepatocyte internalization. Additionally, we pay attention to the development of rapid mixing-based methods that provide robust and scalable LNP production procedures. Finally, we highlight patisiran's clinical translation and LNP delivery technology's potential to enable the development of genetic drugs beyond the current state-of-the-art, such as mRNA and gene editing therapeutics.

Original languageEnglish
Pages (from-to)2435-2444
Number of pages10
JournalAccounts of Chemical Research
Volume52
Issue number9
DOIs
Publication statusPublished - 17 Sep 2019

Fingerprint Dive into the research topics of 'Lipid nanoparticle technology for clinical translation of siRNA therapeutics'. Together they form a unique fingerprint.

Cite this