Linearization of a current-driven reluctance actuator with hysteresis compensation

A. Katalenic, J. Boeij, de, H. Butler, P.P.J. Bosch, van den

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)
4 Downloads (Pure)


This paper investigates the influence of hysteresis present in the ferromagnetic core of a variable reluctance actuators on the force reproducibility. To reduce this influence and to boost reproducibility, a hysteretic inverse actuator model is derived and used to linearize a current-driven reluctance actuator. Furthermore, an identification procedure for identifying the parameters of the hysteresis model and the remaining actuator non-linearities is presented. Two actuators are experimentally tested with the proposed compensator and a linearization error smaller than 0.05% of the maximum force is achieved, which is an order of magnitude improvement over single-valued inverse compensators. A comparably small error is obtained for non-trivial, non-periodic inputs when higher order reversal curves of the actuator hysteresis have to be reproduced as well. The simple structure of the compensator allows a fast implementation in digital controllers.
Original languageEnglish
Pages (from-to)163-171
Number of pages9
Issue number2
Publication statusPublished - 2013


Dive into the research topics of 'Linearization of a current-driven reluctance actuator with hysteresis compensation'. Together they form a unique fingerprint.

Cite this