Library of random copolypeptides by solid state synthesis

V. Dmitrovic, J.J.M. Lenders, H. Zope, G. With, de, A. Kros, N.A.J.M. Sommerdijk

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
3 Downloads (Pure)


Random copolypeptides are promising and versatile bioinspired macromolecules of minimal complexity for studying their interactions with both living and synthetic matter. They provide the opportunity to investigate the role of, for example, total net charge and hydrophobicity through simply changing the monomer composition, without considering the effect of specific sequences or secondary structure. However, synthesizing large libraries of these polymers so far was prohibited by the time-consuming preparation methods available (ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides and enzymatic polymerization of amino acids). Here we report the automated solid phase synthesis (SPS) of a complete library of polypeptides containing Glu, Lys, and Ala monomers with excellent control over the degree of polymerization and composition and with polydispersity indices (PDIs) between 1.01 and 1.001, which is impossible to achieve by other methods. This method provides access to a library of polymers with a precisely defined total charge that can range from approximately -15 to +15 per chain and with a disordered conformation almost completely devoid of any secondary structure. In solution the polymers are largely present as unimers, with only the most hydrophobic polypeptides showing slight signs of aggregation. Our new approach provides convenient access to libraries of this versatile class of polymers with tunable composition, which can be used in a wide variety of physicochemical studies as a tool that allows systematic variation of charge and hydrophobicity, without the interference of secondary structure or aggregation on their performance.
Original languageEnglish
Pages (from-to)3687-3695
Number of pages9
Issue number10
Publication statusPublished - 2014


Dive into the research topics of 'Library of random copolypeptides by solid state synthesis'. Together they form a unique fingerprint.

Cite this