Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator

J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing, J. G. Rarity, J. L. O'Brien, M. G. Thompson

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

We present the experimental demonstration of quantum Hamiltonian learning. Using an integrated silicon-photonics quantum simulator with the classical machine learning technique, we successfully learn the Hamiltonian dynamics of a diamond nitrogen-vacancy center's electron ground-state spin.

Original languageEnglish
Title of host publication2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings
Place of PublicationPiscataway
PublisherInstitute of Electrical and Electronics Engineers
Pages1-2
Number of pages2
ISBN (Electronic)9781943580279
ISBN (Print)978-1-943580-27-9
DOIs
Publication statusPublished - 25 Oct 2017
Event2017 Conference on Lasers and Electro-Optics (CLEO 2017) - San Jose, United States
Duration: 14 May 201719 May 2017

Conference

Conference2017 Conference on Lasers and Electro-Optics (CLEO 2017)
Abbreviated titleCLEO 2017
CountryUnited States
CitySan Jose
Period14/05/1719/05/17

Fingerprint Dive into the research topics of 'Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator'. Together they form a unique fingerprint.

Cite this