Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh Taylor systems

Andrea Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, F. Toschi

Research output: Contribution to journalArticleAcademicpeer-review

84 Citations (Scopus)
333 Downloads (Pure)

Abstract

We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed by Sbragaglia et al. [J. Fluid Mech. 628, 299 (2009)] . We show that the hydrodynamical manifold is given by the correct compressible Fourier–Navier–Stokes equations for a perfect fluid. We validate the numerical algorithm by means of exact results for transition to convection in Rayleigh–Bénard compressible systems and against direct comparison with finite-difference schemes. The method is stable and reliable up to temperature jumps between top and bottom walls of the order of 50% the averaged bulk temperature. We use this method to study Rayleigh–Taylor instability for compressible stratified flows and we determine the growth of the mixing layer at changing Atwood numbers up to At ~ 0.4. We highlight the role played by the adiabatic gradient in stopping the mixing layer growth in the presence of high stratification and we quantify the asymmetric growth rate for spikes and bubbles for two dimensional Rayleigh–Taylor systems with resolution up to Lx×Lz = 1664×4400 and with Rayleigh numbers up to Ra ~ 2×1010.
Original languageEnglish
Article number055101
Pages (from-to)055101-1/21
Number of pages21
JournalPhysics of Fluids
Volume22
Issue number5
DOIs
Publication statusPublished - 2010

Fingerprint

Dive into the research topics of 'Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh Taylor systems'. Together they form a unique fingerprint.

Cite this