Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

M.A. Peletier, F.H.J. Redig, K. Vafayi

Research output: Contribution to journalArticleAcademicpeer-review

192 Downloads (Pure)

Abstract

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter $m$, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP$(m)$ and the KMP, and a nonlinear heat equation for the GBEP($a$). We prove the hydrodynamic limit rigorously for the BEP$(m)$, and give a formal derivation for the GBEP($a$). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form $-\log \rho$; they involve dissipation or mobility terms of order $\rho^2$ for the linear heat equation, and a nonlinear function of $\rho$ for the nonlinear heat equation.
Original languageEnglish
Pages (from-to)093301/1-19
Number of pages19
JournalJournal of Mathematical Physics
Volume55
Issue number9
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction'. Together they form a unique fingerprint.

Cite this