Abstract
Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a modulator to a cluster graph, or a (promised) max leaf number. We obtain lower bounds via cross-composition, e.g., for Hamiltonian Cycle and related problems when parameterized by a modulator to an outerplanar graph.
Original language | English |
---|---|
Title of host publication | Parameterized and Exact Computation - 6th International Symposium, IPEC 2011, Revised Selected Papers |
Pages | 145-158 |
Number of pages | 14 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Event | 6th International Symposium on Parameterized and Exact Computation, IPEC 2011 - Saarbrucken, Germany Duration: 6 Sept 2011 → 8 Sept 2011 Conference number: 6 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Volume | 7112 |
ISSN (Print) | 03029743 |
ISSN (Electronic) | 16113349 |
Conference
Conference | 6th International Symposium on Parameterized and Exact Computation, IPEC 2011 |
---|---|
Abbreviated title | IPEC 2011 |
Country/Territory | Germany |
City | Saarbrucken |
Period | 6/09/11 → 8/09/11 |