Iterative Learning Control design for uncertain and time-windowed systems

J.J.M. Wijdeven, van de

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

577 Downloads (Pure)


Iterative Learning Control (ILC) is a control strategy capable of dramatically increasing the performance of systems that perform batch repetitive tasks. This performance improvement is achieved by iteratively updating the command signal, using measured error data from previous trials, i.e., by learning from past experience. This thesis deals with ILC for time-windowed and uncertain systems. With the term "time-windowed systems", we mean systems in which actuation and measurement time intervals differ. With "uncertain systems", we refer to systems whose behavior is represented by incomplete or inaccurate models. To study the ILC design issues for time-windowed systems, we consider the task of residual vibration suppression in point-to-point motion problems. In this application, time windows are used to modify the original system to comply with the task. With the properties of the time-windowed system resulting in nonconverging behavior of the original ILC controlled system, we introduce a novel ILC design framework in which convergence can be achieved. Additionally, this framework reveals new design freedom in ILC for point-to-point motion problems, which is unknown in "standard" ILC. Theoretical results concerning the problem formulation and control design for these systems are supported by experimental results on a SISO and MIMO flexible structure. The analysis and design results of ILC for time-windowed systems are subsequently extended to the whole class of linear systems whose input and output are filtered with basis functions (which include time windows). Analysis and design theory of ILC for this class of systems reveals how different ILC objectives can be reached by design of separate parts of the ILC controller. Our research on ILC for uncertain systems is divided into two parts. In the first part, we formulate an approach to analyze the robustness properties of existing ILC controllers, using well developed µ theory. To exemplify our findings, we analyze the robustness properties of linear quadratic (LQ) norm optimal ILC controllers. Moreover, we show that the approach is applicable to the class of linear trial invariant ILC controlled systems with basis functions. In the second part, we present a finite time interval robust ILC control strategy that is robust against model uncertainty as given by an additive uncertainty model. For that, we exploit H1 control theory, however, modified such that the controller is not restricted to be causal and operates on a finite time interval. Furthermore, we optimize the robust controller so as to optimize performance while remaining robustly monotonically convergent. By means of experiments on a SISO flexible system, we show that this control strategy can indeed outperform LQ norm optimal ILC and causal robust ILC control strategies.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Mechanical Engineering
  • Bosgra, Okko, Promotor
  • Steinbuch, Maarten, Promotor
Award date12 Nov 2008
Place of PublicationEindhoven
Print ISBNs978-90-386-1435-9
Publication statusPublished - 2008


Dive into the research topics of 'Iterative Learning Control design for uncertain and time-windowed systems'. Together they form a unique fingerprint.

Cite this