Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography

Hongliang Li, Boris Chayer, Marie Hélene Roy Cardinal, Judith Muijsers, Marcel van den Hoven, Zhao Qin, Marc Gesnik, Gilles Soulez, Richard G.P. Lopata, Guy Cloutier (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Ultrasound noninvasive vascular elastography (NIVE) has shown its potential to measure strains of carotid arteries to predict plaque instability. When two-dimensional (2D) strain estimation is performed, either in longitudinal or cross-sectional view, only in-plane motions are considered. The motions in elevation direction (i.e. perpendicular to the imaging plane), can induce estimation artifacts affecting the accuracy of 2D NIVE. The influence of such out-of-plane motions on the performance of axial strain and axial shear strain estimations has been evaluated in this study. For this purpose, we designed a diseased carotid bifurcation phantom with a 70% stenosis and an in vitro experimental setup to simulate orthogonal out-of-plane motions of 1 mm, 2 mm and 3 mm. The Lagrangian speckle model estimator (LSME) was used to estimate axial strains and shears under pulsatile conditions. As anticipated, in vitro results showed more strain estimation artifacts with increasing magnitudes of motions in elevation. However, even with an out-of-plane motion of 2.0 mm, strain and shear estimations having inter-frame correlation coefficients higher than 0.85 were obtained. To verify findings of in vitro experiments, a clinical LSME dataset obtained from 18 participants with carotid artery stenosis was used. Deduced out-of-plane motions (ranging from 0.25 mm to 1.04 mm) of the clinical dataset were classified into three groups: small, moderate and large elevational motions. Clinical results showed that pulsatile time-varying strains and shears remained reproducible for all motion categories since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations (NCC) between radiofrequency (RF) images were above 0.93. In summary, the performance of LSME axial strain and shear estimations appeared robust in the presence of out-of-plane motions (<2 mm) as encountered during clinical ultrasound imaging.

Original languageEnglish
Article number245003
Number of pages15
JournalPhysics in Medicine and Biology
Volume63
Issue number24
DOIs
Publication statusPublished - 10 Dec 2018

Keywords

  • Artifacts
  • Carotid Arteries/diagnostic imaging
  • Carotid Stenosis/diagnostic imaging
  • Elasticity Imaging Techniques/methods
  • Humans
  • Motion
  • Phantoms, Imaging

Fingerprint Dive into the research topics of 'Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography'. Together they form a unique fingerprint.

  • Cite this

    Li, H., Chayer, B., Roy Cardinal, M. H., Muijsers, J., van den Hoven, M., Qin, Z., Gesnik, M., Soulez, G., Lopata, R. G. P., & Cloutier, G. (2018). Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography. Physics in Medicine and Biology, 63(24), [245003]. https://doi.org/10.1088/1361-6560/aaf0d3