Intermodal resonance of vibrating suspended cables

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review


The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the gravity mode (probably the most common type of vibration of relatively inelastic spans) does not exist for particular values of the problem parameter. The reason is that for these parameter values the 1st and 2nd harmonic are in resonance. The true nature of this resonance has now been established and analysed in detail by an application of the Lindstedt-Poincaré technique. The leading order 1st and 2nd harmonic can only exist together with each other. As a result, the tension, albeit of 2nd harmonic, does not vanish at leading order and the mode is not anymore truly dominated by gravity alone. The analysis is worked out here in detail for a single span. It is conjectured that designing the suspended cable with parameter values right at this resonance will delay or hinder the occurrence of galloping.
Original languageEnglish
Title of host publicationProceedings 10th International Conference on Recent Advances in Structural Dynamics (RASD 2010, Southampton, UK, July 12-14, 2010)
Publication statusPublished - 2010


Dive into the research topics of 'Intermodal resonance of vibrating suspended cables'. Together they form a unique fingerprint.

Cite this