Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin

T. Gerkema, M. Duran Matute

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west–east component of the net wind energy, with some further improvement if one also includes the south–north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west–east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.
LanguageEnglish
Pages1223-1235
Number of pages13
JournalEarth System Dynamics
Volume8
Issue number4
DOIs
StatePublished - 20 Dec 2017

Fingerprint

sea level
climate
basin
weather station
tide gauge
wind direction
confidence interval
atmospheric pressure
energy
spatial resolution
climate change
coast
Wadden Sea

Cite this

@article{6e1440e6037a4a419ffcedd9bb0cb581,
title = "Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin",
abstract = "The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west–east component of the net wind energy, with some further improvement if one also includes the south–north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west–east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 {\%} confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.",
author = "T. Gerkema and {Duran Matute}, M.",
year = "2017",
month = "12",
day = "20",
doi = "10.5194/esd-8-1223-2017",
language = "English",
volume = "8",
pages = "1223--1235",
journal = "Earth System Dynamics",
issn = "2190-4979",
publisher = "Copernicus",
number = "4",

}

Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin. / Gerkema, T.; Duran Matute, M.

In: Earth System Dynamics, Vol. 8, No. 4, 20.12.2017, p. 1223-1235.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin

AU - Gerkema,T.

AU - Duran Matute,M.

PY - 2017/12/20

Y1 - 2017/12/20

N2 - The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west–east component of the net wind energy, with some further improvement if one also includes the south–north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west–east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.

AB - The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west–east component of the net wind energy, with some further improvement if one also includes the south–north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west–east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.

U2 - 10.5194/esd-8-1223-2017

DO - 10.5194/esd-8-1223-2017

M3 - Article

VL - 8

SP - 1223

EP - 1235

JO - Earth System Dynamics

T2 - Earth System Dynamics

JF - Earth System Dynamics

SN - 2190-4979

IS - 4

ER -