TY - JOUR
T1 - Inter-electrode delay estimators for electrohysterographic propagation analysis
AU - Rabotti, C.
AU - Mischi, M.
AU - Laar, van, J.O.E.H.
AU - Oei, S.G.
AU - Bergmans, J.W.M.
PY - 2009
Y1 - 2009
N2 - Premature birth is a major cause of mortality and permanent dysfunctions. Several parameters derived from single channel electrohysterographic (EHG) signals have been considered to determine contractions leading to preterm delivery. The results are promising, but improvements are needed. As effective uterine contractions result from a proper action potential propagation, in this paper we focus on the propagation properties of EHG signals, which can be predictive of preterm delivery. Two standard delay estimators, namely maximization of the cross-correlation function and spectral matching, are adapted and implemented for the assessment of inter-electrode delays of propagating EHG signals. The accuracy of the considered standard estimators might be hampered by a poor inter-channel correlation. An improved dedicated approach is therefore proposed. By simultaneous adaptive estimation of the volume conductor transfer function and the delay, a dedicated method is conceived for improving the inter-channel signal similarity during delay calculation. Furthermore, it provides delay estimates without resolution limits and it is suitable for low sampling rates, which are appropriate for EHG recording. The three estimators were evaluated on EHG signals recorded on seven women. The dedicated approach provided more accurate estimates due to a 22% improvement of the initial average inter-channel correlation.
AB - Premature birth is a major cause of mortality and permanent dysfunctions. Several parameters derived from single channel electrohysterographic (EHG) signals have been considered to determine contractions leading to preterm delivery. The results are promising, but improvements are needed. As effective uterine contractions result from a proper action potential propagation, in this paper we focus on the propagation properties of EHG signals, which can be predictive of preterm delivery. Two standard delay estimators, namely maximization of the cross-correlation function and spectral matching, are adapted and implemented for the assessment of inter-electrode delays of propagating EHG signals. The accuracy of the considered standard estimators might be hampered by a poor inter-channel correlation. An improved dedicated approach is therefore proposed. By simultaneous adaptive estimation of the volume conductor transfer function and the delay, a dedicated method is conceived for improving the inter-channel signal similarity during delay calculation. Furthermore, it provides delay estimates without resolution limits and it is suitable for low sampling rates, which are appropriate for EHG recording. The three estimators were evaluated on EHG signals recorded on seven women. The dedicated approach provided more accurate estimates due to a 22% improvement of the initial average inter-channel correlation.
U2 - 10.1088/0967-3334/30/8/002
DO - 10.1088/0967-3334/30/8/002
M3 - Article
C2 - 19550024
SN - 0967-3334
VL - 30
SP - 745
EP - 761
JO - Physiological Measurement
JF - Physiological Measurement
IS - 8
ER -