TY - CHAP
T1 - Intelligence in electricity networks for embedding renewables and distributed generation
AU - Kok, Koen
AU - Scheepers, Martin
AU - Kamphuis, René
PY - 2009
Y1 - 2009
N2 - Over the course of the 20th century, electrical power systems have become one of the most complex systems created by mankind. Electricity has made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. The electricity infrastructure consists of two highly-interrelated subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, two other trends force a change in infrastructure management. Firstly, there is a shift toward intermittent sources, which gives rise to a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, and, with the increase of distributed generators (DG), the generation capacity embedded in the (medium and low voltage) distribution networks is rising. Due to these developments, intelligent distributed coordination will be essential to ensure the efficient operation of this critical infrastructure in the future. As compared to traditional grids, operated in a top-down manner, these novel grids will require bottom-up control. As field test results have shown, intelligent distributed coordination can be beneficial to both energy trade and active network management. In future power grids, these functions need to be combined in a dual-objective coordination mechanism. To exert this type of control, alignment of power systems with communication network technology as well as computer hardware and software in shared information architectures will be necessary.
AB - Over the course of the 20th century, electrical power systems have become one of the most complex systems created by mankind. Electricity has made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. The electricity infrastructure consists of two highly-interrelated subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, two other trends force a change in infrastructure management. Firstly, there is a shift toward intermittent sources, which gives rise to a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, and, with the increase of distributed generators (DG), the generation capacity embedded in the (medium and low voltage) distribution networks is rising. Due to these developments, intelligent distributed coordination will be essential to ensure the efficient operation of this critical infrastructure in the future. As compared to traditional grids, operated in a top-down manner, these novel grids will require bottom-up control. As field test results have shown, intelligent distributed coordination can be beneficial to both energy trade and active network management. In future power grids, these functions need to be combined in a dual-objective coordination mechanism. To exert this type of control, alignment of power systems with communication network technology as well as computer hardware and software in shared information architectures will be necessary.
U2 - 10.1007/978-90-481-3598-1_8
DO - 10.1007/978-90-481-3598-1_8
M3 - Chapter
SN - 978-90-481-3597-4
T3 - Intelligent Systems, Control and Automation: Science and Engineering
SP - 179
EP - 209
BT - Intelligent Infrastructures
A2 - Negenborn, Rudy R.
A2 - Lukszo, Zofia
A2 - Hellendoorn, Hans
PB - Springer
CY - Dordrecht
ER -