Integrating all-optical switching with spintronics

M.L.M. Lalieu (Corresponding author), R. Lavrijsen, B. Koopmans

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)
60 Downloads (Pure)

Abstract

All-optical switching (AOS) of magnetic materials describes the reversal of the magnetization using short (femtosecond) laser pulses, and received extensive attention in the past decade due to its high potential for fast and energy-efficient data writing in future spintronic memory applications. Unfortunately, the AOS mechanism in the ferromagnetic multilayers commonly used in spintronics needs multiple pulses for the magnetization reversal, losing its speed and energy efficiency. Here, we experimentally demonstrate on-the-fly single-pulse AOS in combination with spin Hall effect (SHE) driven motion of magnetic domains in Pt/Co/Gd synthetic-ferrimagnetic racetracks. Moreover, using field-driven-SHE-assisted domain wall (DW) motion measurements, both the SHE efficiency in the racetrack is determined and the chirality of the optically written DW’s is verified. Our experiments demonstrate that Pt/Co/Gd racetracks facilitate both single-pulse AOS as well as efficient SHE-induced domain wall motion, which might ultimately pave the way towards integrated photonic memory devices.

Original languageEnglish
Article number110
Number of pages6
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 10 Jan 2019

Fingerprint Dive into the research topics of 'Integrating all-optical switching with spintronics'. Together they form a unique fingerprint.

Cite this