Abstract
Inkjet printing represents a highly promising polymer deposition method, which is used for, for example, the fabrication of multicolor polyLED displays and polymer-based electronics parts. The challenge is to print well-defined polymer structures from dilute solution. We have eliminated the formation of ring stains by printing nonvolatile acetophenone-based inks on a perfluorinated substrate using different polymers. (De)pinning of the contact line of the printed droplet, as related to the choice of solvent, is identified as the key factor that determines the shape of the deposit, whereas the choice of polymer is of minor importance. Adding 10 wt % or more of acetophenone to a volatile solvent (ethyl acetate)-based polymer solution changes the shape of the deposit from ring-like to dot-like, which may be due to the establishment of a solvent composition gradient. Arrays of closely spaced dots have also been printed. The size of the dots is considerably smaller than the nozzle diameter. This may prove a potential strategy for the inkjet printing of submicrometer structures.
Original language | English |
---|---|
Pages (from-to) | 7789-7793 |
Journal | Langmuir |
Volume | 20 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2004 |