Influence of surface temperature on the mechanism of atomic layer deposition of aluminum oxide using an oxygen plasma and ozone

V.R. Rai, V. Vandalon, S. Agarwal

Research output: Contribution to journalArticleAcademicpeer-review

37 Citations (Scopus)
1 Downloads (Pure)

Abstract

We have examined the role of substrate temperature on the surface reaction mechanisms during the atomic layer deposition (ALD) of Al(2)O(3) from trimethyl aluminum (TMA) in combination with an O(2) plasma and O(3) over a substrate temperature range of 70-200 degrees C. The ligand-exchange reactions were investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy. Consistent with our previous work on ALD of Al(2)O(3) from an O2 plasma and O(3) [Rai, V. R; Vandalon, V.; Agarwal, S. Langmuir 2010, 26, 13732], both OH groups and carbonates were the chemisorption sites for TMA over the entire temperature range explored. The concentration of surface -CH(3) groups after the TMA cycle was, however, strongly dependent on the surface temperature and the type of oxidizer, which in turn influenced the corresponding growth per cycle. The combustion of surface CH(3) ligands was not complete at 70 degrees C during O(3) exposure, indicating that an O(2) plasma is a relatively stronger oxidizing agent. Further, in O(3)-assisted ALD, the ratio of mono- and bidentate carbonates on the surface after O(3) exposure was dependent on the substrate temperature
Original languageEnglish
Pages (from-to)350-357
Number of pages8
JournalLangmuir
Volume28
Issue number1
DOIs
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'Influence of surface temperature on the mechanism of atomic layer deposition of aluminum oxide using an oxygen plasma and ozone'. Together they form a unique fingerprint.

  • Cite this