TY - JOUR
T1 - Influence of Local Environments in Pores of Different Size on the Catalytic Liquid-Phase Oxidation of d -Glucose by Au Nanoparticles Supported on Nanoporous Carbon
AU - Perovic, Milena
AU - Tarakina, Nadezda V.
AU - Hofmann, Jan Philipp
AU - Oschatz, Martin
PY - 2020/8/28
Y1 - 2020/8/28
N2 - Inorganic nanoparticles (NPs) dispersed on the surface of porous support materials play a dominant role in heterogeneous catalysis. Especially in liquid-phase catalysis, support materials may lead to nanoconfinement of solvent molecules, and the solute and can thus influence their local concentration and structure. This further affects the surface coverage of nanoparticles with reactants and other species, but these influences remain poorly understood - in particular under experimental conditions. Nanoconfinement effects are of particular importance in reactions such as liquid-phase oxidation with oxygen, i.e., when one reactant is a gas that has to be dissolved before reaching the NP surface. The significant influence of the pore structure of carbon materials on the catalytic activity of gold nanoparticles (AuNPs) with nearly similar size (4.1-4.7 nm) is demonstrated in this study. Experimental results on the oxidation of d-glucose with molecular oxygen in aqueous solution show that the "apparent catalytic activity"of AuNPs is a function of the carbon pore size and geometry. The architecture of the carbon pore size is determining the local concentration of reactants. Nanoconfinement of water in carbon nanopores can lead to enhanced solubility of reactants and therefore to their higher local concentration in proximity to the catalytically active sites. In contrast to purely microporous carbon support with the less wettable internal surface without any detectable catalytic activity, AuNPs supported on mesoporous carbons show a much higher metal time yield between 3.8 and 60.6 molGlc min-1 molAu-1, depending on volume and geometry of the mesopores.
AB - Inorganic nanoparticles (NPs) dispersed on the surface of porous support materials play a dominant role in heterogeneous catalysis. Especially in liquid-phase catalysis, support materials may lead to nanoconfinement of solvent molecules, and the solute and can thus influence their local concentration and structure. This further affects the surface coverage of nanoparticles with reactants and other species, but these influences remain poorly understood - in particular under experimental conditions. Nanoconfinement effects are of particular importance in reactions such as liquid-phase oxidation with oxygen, i.e., when one reactant is a gas that has to be dissolved before reaching the NP surface. The significant influence of the pore structure of carbon materials on the catalytic activity of gold nanoparticles (AuNPs) with nearly similar size (4.1-4.7 nm) is demonstrated in this study. Experimental results on the oxidation of d-glucose with molecular oxygen in aqueous solution show that the "apparent catalytic activity"of AuNPs is a function of the carbon pore size and geometry. The architecture of the carbon pore size is determining the local concentration of reactants. Nanoconfinement of water in carbon nanopores can lead to enhanced solubility of reactants and therefore to their higher local concentration in proximity to the catalytically active sites. In contrast to purely microporous carbon support with the less wettable internal surface without any detectable catalytic activity, AuNPs supported on mesoporous carbons show a much higher metal time yield between 3.8 and 60.6 molGlc min-1 molAu-1, depending on volume and geometry of the mesopores.
KW - confinement
KW - glucose oxidation
KW - gold nanoparticles
KW - heterogeneous catalysis
KW - mesopores
KW - nanoporous carbons
UR - http://www.scopus.com/inward/record.url?scp=85092229274&partnerID=8YFLogxK
U2 - 10.1021/acsanm.0c01299
DO - 10.1021/acsanm.0c01299
M3 - Article
AN - SCOPUS:85092229274
SN - 2574-0970
VL - 3
SP - 7695
EP - 7703
JO - ACS Applied Nano Materials
JF - ACS Applied Nano Materials
IS - 8
ER -