TY - JOUR
T1 - Influence of cation Na/Ca ratio on adsorption in LTA 5A
T2 - A systematic molecular simulation study of alkane chain length
AU - García-Pérez, E.
AU - Dubbeldam, D.
AU - Maesen, T.L.M.
AU - Calero, Sofia
PY - 2006/11/30
Y1 - 2006/11/30
N2 - Recent adsorption isotherms of n-alkanes on Ca,Na-LTA-type zeolite afford development of a force field describing the interactions between calcium and n-alkanes in configurational-bias Monte Carlo simulations. The force field of Calero et al. (J. Am. Chem. Soc. 2004, 126, 11377-11386) is able to accurately describe the adsorption properties of linear alkanes in the sodium form of FAU-type zeolites. Here, we extend upon this type of force field by including calcium-type ions. The force field was fitted to reproduce the calcium and sodium cations positions on LTA 5A and the experimental adsorption properties of n-alkanes over all range of temperatures and pressures. This opens up a vast amount of experimental data on LTA 5A, both on adsorption and diffusion. Furthermore, evaluation of half a century of reported n-alkane adsorption data on LTA-type zeolites indicates that there are many inconsistencies between the various data sets, possibly as a result of (i) undisclosed calcium and sodium contents, (ii) less than perfect drying of the hygroscopic zeolite, and (iii) coadsorption of contaminants such as vacuum grease. Having obtained our force field, and confirmed its reliability on predictions outside the calibration set, we apply the force field on two "open" problems: (a) the heats of adsorption and Henry coefficient as a function of chain length and (b) the effect of cations in LTA-type zeolites. The molecular simulations shed new light on previous experimental findings, and we provide rationalizations on the molecular level that can be generalized to the class of cage/window-type nanoporous materials.
AB - Recent adsorption isotherms of n-alkanes on Ca,Na-LTA-type zeolite afford development of a force field describing the interactions between calcium and n-alkanes in configurational-bias Monte Carlo simulations. The force field of Calero et al. (J. Am. Chem. Soc. 2004, 126, 11377-11386) is able to accurately describe the adsorption properties of linear alkanes in the sodium form of FAU-type zeolites. Here, we extend upon this type of force field by including calcium-type ions. The force field was fitted to reproduce the calcium and sodium cations positions on LTA 5A and the experimental adsorption properties of n-alkanes over all range of temperatures and pressures. This opens up a vast amount of experimental data on LTA 5A, both on adsorption and diffusion. Furthermore, evaluation of half a century of reported n-alkane adsorption data on LTA-type zeolites indicates that there are many inconsistencies between the various data sets, possibly as a result of (i) undisclosed calcium and sodium contents, (ii) less than perfect drying of the hygroscopic zeolite, and (iii) coadsorption of contaminants such as vacuum grease. Having obtained our force field, and confirmed its reliability on predictions outside the calibration set, we apply the force field on two "open" problems: (a) the heats of adsorption and Henry coefficient as a function of chain length and (b) the effect of cations in LTA-type zeolites. The molecular simulations shed new light on previous experimental findings, and we provide rationalizations on the molecular level that can be generalized to the class of cage/window-type nanoporous materials.
UR - http://www.scopus.com/inward/record.url?scp=33846106874&partnerID=8YFLogxK
U2 - 10.1021/jp064971y
DO - 10.1021/jp064971y
M3 - Article
AN - SCOPUS:33846106874
SN - 1520-6106
VL - 110
SP - 23968
EP - 23976
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 47
ER -