Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts

Marlous Hofmans (Corresponding author), Ana Sobota (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

The electric field in the head of the plasma bullet (ionization wave) in a cold atmospheric pressure plasma jet is measured using the Stark polarization spectroscopy technique, a noninvasive method. The jet is driven by 1 μ s long voltage pulses at 6 kV amplitude and 5 kHz frequency, and a helium gas flow of 1.5 slm. Two helium lines (447.1 nm and 492.2 nm) are studied, from which the peak-to-peak wavelength difference between the allowed and forbidden band of the spectral lines is determined. The full derivation to obtain the electric field from this peak-to-peak difference is included in this paper. The electric field is determined both inside and outside the capillary of the jet, up to about 2 cm in the effluent of the jet. Measurements are performed on the freely expanding jet, but especially the influence is studied when a target is placed in front of the plasma jet. Targets with different properties are used: insulating (polyvinyl chloride, PVC), conducting (copper), liquid (distilled water and saline), and organic (chicken breast). It is found that a target changes the electric field of the plasma jet and thus changes the plasma itself. This change depends on the dielectric constant or conductivity of the target: a higher dielectric constant or higher conductivity yields a higher electric field. For a low dielectric constant ( ϵ r ≈ 3), the change in the electric field is negligible. Decreasing the distance between the target and the capillary to below 2 cm yields an increase in the electric field.

Original languageEnglish
Article number043303
Number of pages17
JournalJournal of Applied Physics
Volume125
Issue number4
DOIs
Publication statusPublished - 28 Jan 2019

Fingerprint

plasma jets
atmospheric pressure
electric fields
shift
profiles
permittivity
helium
polyvinyl chloride
forbidden bands
conductivity
chickens
effluents
breast
gas flow
line spectra
derivation
conduction
ionization
copper
electric potential

Cite this

@article{415fac526dea44df98f048bbf2b93378,
title = "Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts",
abstract = "The electric field in the head of the plasma bullet (ionization wave) in a cold atmospheric pressure plasma jet is measured using the Stark polarization spectroscopy technique, a noninvasive method. The jet is driven by 1 μ s long voltage pulses at 6 kV amplitude and 5 kHz frequency, and a helium gas flow of 1.5 slm. Two helium lines (447.1 nm and 492.2 nm) are studied, from which the peak-to-peak wavelength difference between the allowed and forbidden band of the spectral lines is determined. The full derivation to obtain the electric field from this peak-to-peak difference is included in this paper. The electric field is determined both inside and outside the capillary of the jet, up to about 2 cm in the effluent of the jet. Measurements are performed on the freely expanding jet, but especially the influence is studied when a target is placed in front of the plasma jet. Targets with different properties are used: insulating (polyvinyl chloride, PVC), conducting (copper), liquid (distilled water and saline), and organic (chicken breast). It is found that a target changes the electric field of the plasma jet and thus changes the plasma itself. This change depends on the dielectric constant or conductivity of the target: a higher dielectric constant or higher conductivity yields a higher electric field. For a low dielectric constant ( ϵ r ≈ 3), the change in the electric field is negligible. Decreasing the distance between the target and the capillary to below 2 cm yields an increase in the electric field.",
author = "Marlous Hofmans and Ana Sobota",
year = "2019",
month = "1",
day = "28",
doi = "10.1063/1.5075544",
language = "English",
volume = "125",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics",
number = "4",

}

TY - JOUR

T1 - Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts

AU - Hofmans, Marlous

AU - Sobota, Ana

PY - 2019/1/28

Y1 - 2019/1/28

N2 - The electric field in the head of the plasma bullet (ionization wave) in a cold atmospheric pressure plasma jet is measured using the Stark polarization spectroscopy technique, a noninvasive method. The jet is driven by 1 μ s long voltage pulses at 6 kV amplitude and 5 kHz frequency, and a helium gas flow of 1.5 slm. Two helium lines (447.1 nm and 492.2 nm) are studied, from which the peak-to-peak wavelength difference between the allowed and forbidden band of the spectral lines is determined. The full derivation to obtain the electric field from this peak-to-peak difference is included in this paper. The electric field is determined both inside and outside the capillary of the jet, up to about 2 cm in the effluent of the jet. Measurements are performed on the freely expanding jet, but especially the influence is studied when a target is placed in front of the plasma jet. Targets with different properties are used: insulating (polyvinyl chloride, PVC), conducting (copper), liquid (distilled water and saline), and organic (chicken breast). It is found that a target changes the electric field of the plasma jet and thus changes the plasma itself. This change depends on the dielectric constant or conductivity of the target: a higher dielectric constant or higher conductivity yields a higher electric field. For a low dielectric constant ( ϵ r ≈ 3), the change in the electric field is negligible. Decreasing the distance between the target and the capillary to below 2 cm yields an increase in the electric field.

AB - The electric field in the head of the plasma bullet (ionization wave) in a cold atmospheric pressure plasma jet is measured using the Stark polarization spectroscopy technique, a noninvasive method. The jet is driven by 1 μ s long voltage pulses at 6 kV amplitude and 5 kHz frequency, and a helium gas flow of 1.5 slm. Two helium lines (447.1 nm and 492.2 nm) are studied, from which the peak-to-peak wavelength difference between the allowed and forbidden band of the spectral lines is determined. The full derivation to obtain the electric field from this peak-to-peak difference is included in this paper. The electric field is determined both inside and outside the capillary of the jet, up to about 2 cm in the effluent of the jet. Measurements are performed on the freely expanding jet, but especially the influence is studied when a target is placed in front of the plasma jet. Targets with different properties are used: insulating (polyvinyl chloride, PVC), conducting (copper), liquid (distilled water and saline), and organic (chicken breast). It is found that a target changes the electric field of the plasma jet and thus changes the plasma itself. This change depends on the dielectric constant or conductivity of the target: a higher dielectric constant or higher conductivity yields a higher electric field. For a low dielectric constant ( ϵ r ≈ 3), the change in the electric field is negligible. Decreasing the distance between the target and the capillary to below 2 cm yields an increase in the electric field.

UR - http://www.scopus.com/inward/record.url?scp=85060541887&partnerID=8YFLogxK

U2 - 10.1063/1.5075544

DO - 10.1063/1.5075544

M3 - Article

AN - SCOPUS:85060541887

VL - 125

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 4

M1 - 043303

ER -