TY - GEN

T1 - Induction is not derivable in second order dependent type theory

AU - Geuvers, J.H.

PY - 2001

Y1 - 2001

N2 - This paper proves the non-derivability of induction in second order dependent type theory (¿P2). This is done by providing a model construction for ¿P2, based on a saturated sets like interpretation of types as sets of terms of a weakly extensional combinatory algebra. We give counter-models in which the induction principle over natural numbers is not valid. The proof does not depend on the specific encoding for natural numbers that has been chosen (like e.g. polymorphic Church numerals), so in fact we prove that there can not be an encoding of natural numbers in ¿P2 such that the induction principle is satisfied. The method extends immediately to other data types, like booleans, lists, trees, etc.
In the process of the proof we establish some general properties of the models, which we think are of independent interest. Moreover, we show that the Axiom of Choice is not derivable in ¿P2.

AB - This paper proves the non-derivability of induction in second order dependent type theory (¿P2). This is done by providing a model construction for ¿P2, based on a saturated sets like interpretation of types as sets of terms of a weakly extensional combinatory algebra. We give counter-models in which the induction principle over natural numbers is not valid. The proof does not depend on the specific encoding for natural numbers that has been chosen (like e.g. polymorphic Church numerals), so in fact we prove that there can not be an encoding of natural numbers in ¿P2 such that the induction principle is satisfied. The method extends immediately to other data types, like booleans, lists, trees, etc.
In the process of the proof we establish some general properties of the models, which we think are of independent interest. Moreover, we show that the Axiom of Choice is not derivable in ¿P2.

U2 - 10.1007/3-540-45413-6_16

DO - 10.1007/3-540-45413-6_16

M3 - Conference contribution

SN - 3-540-41960-8

T3 - Lecture Notes in Computer Science

SP - 166

EP - 181

BT - Typed Lambda Calculi and Applications : 5th International Conference, TLCA 2001, Kraków, Poland, May 2-5, 2001: proceedings

A2 - Abramsky, S.

PB - Springer

ER -