Independent set reconfiguration thresholds of hereditary graph classes

M de Berg, B.M.P. Jansen, D. Mukherjee

Research output: Contribution to journalArticleAcademic

134 Downloads (Pure)


Traditionally, reconfiguration problems ask the question whether a given solution of an optimization problem can be transformed to a target solution in a sequence of small steps that preserve feasibility of the intermediate solutions. In this paper, rather than asking this question from an algorithmic perspective, we analyze the combinatorial structure behind it. We consider the problem of reconfiguring one independent set into another, using two different processes: (1) exchanging exactly $k$ vertices in each step, or (2) removing or adding one vertex in each step while ensuring the intermediate sets contain at most $k$ fewer vertices than the initial solution. We are interested in determining the minimum value of $k$ for which this reconfiguration is possible, and bound these threshold values in terms of several structural graph parameters. For hereditary graph classes we identify structures that cause the reconfiguration threshold to be large.
Original languageEnglish
Article number1610.03766
Number of pages31
Issue numberarXiv:1610.03766 [cs.DM]
Publication statusPublished - 12 Oct 2016

Bibliographical note

31 pages, 3 figures, accepted in 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2016


  • cs.DM
  • G.2.1


Dive into the research topics of 'Independent set reconfiguration thresholds of hereditary graph classes'. Together they form a unique fingerprint.

Cite this