Abstract
Distribution utilities are becoming increasingly aware that their networks may struggle to accommodate large numbers of plug-in electric vehicles (PEVs). In particular, uncoordinated overnight charging is expected to be problematic, as the corresponding aggregated power demand exceeds the capacity of most distribution substation transformers. In this paper, a dynamical model of PEVs served by a single temperature-constrained substation transformer is presented and a centralized scheduling scheme is formulated to coordinate charging of a heterogeneous PEV fleet. We employ the dual-ascent method to derive an iterative, incentive-based and non-centralized implementation of the PEV charging algorithm, which is optimal upon convergence. Then, the distributed open-loop problem is embedded in a predictive control scheme to introduce robustness against disturbances. Simulations of an overnight charging scenario illustrate the effectiveness of the so-obtained incentive-based coordinated PEV control scheme in terms of performance and enforcing the transformer's thermal constraint.
Original language | English |
---|---|
Title of host publication | Proceedings of the American Control Conference (ACC 2012), 27-29 June 2012, Montreal, Canada |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 264-269 |
Publication status | Published - 2012 |
Event | 2012 American Control Conference, ACC 2012 - Fairmont Queen Elizabeth, Montreal, Canada Duration: 27 Jun 2012 → 29 Jun 2012 http://acc2012.a2c2.org/ http://acc2012.a2c2.org/index.php |
Conference
Conference | 2012 American Control Conference, ACC 2012 |
---|---|
Abbreviated title | ACC 2012 |
Country/Territory | Canada |
City | Montreal |
Period | 27/06/12 → 29/06/12 |
Internet address |