In vivo response to electrochemically aligned collagen bioscaffolds

Vipuil Kishore, Jorge Alfredo Uquillas, Alexandra Dubikovsky, Musa A Alshehabat, Paul W Snyder, Gert J Breur, Ozan Akkus

Research output: Contribution to journalArticleAcademicpeer-review

44 Citations (Scopus)

Abstract

Collagen-based biomaterials are a viable option for tendon reconstruction and repair. However, the weak mechanical strength of collagen constructs is a major limitation. We have previously reported a novel methodology to form highly oriented electrochemically aligned collagen (ELAC) threads with mechanical properties converging on those of the natural tendon. In this study, we assessed the in vivo response of rabbit patellar tendon (PT) to braided ELAC bioscaffolds. Rabbit PTs were incised longitudinally and the ELAC bioscaffold was inlaid in one limb along the length of the tendon. The contralateral limb served as the sham-operated control. Rabbits were euthanized at 4 or 8 months postoperatively. High-resolution radiographs revealed the absence of ectopic bone formation around the bioscaffolds. Four months post-implantation, the histological sections showed that the ELAC bioscaffold underwent limited degradation and was associated with a low-grade granulomatous inflammation. Additionally, quantitative histology revealed that the cross-sectional areas of PTs with the ELAC bioscaffold were 29% larger compared with the controls. Furthermore, ELAC-treated PTs were significantly stiffer compared with the controls. The volume fraction of the tendon fascicle increased in the ELAC-treated PT compared with the controls. By 8 months, the ELAC bioscaffold was mostly absorbed and the enlargement in the area of tendons with implants subsided along with the resolution of the granulomatous inflammation. We conclude that ELAC is biocompatible and biodegradable and has the potential to be used as a biomaterial for tendon tissue engineering applications.

Original languageEnglish
Pages (from-to)400-408
Number of pages9
JournalJournal of Biomedical Materials Research, Part B: Applied Biomaterials
Volume100
Issue number2
DOIs
Publication statusPublished - Feb 2012
Externally publishedYes

Bibliographical note

Copyright © 2011 Wiley Periodicals, Inc.

Keywords

  • Animals
  • Collagen/chemistry
  • Electrochemical Techniques
  • Female
  • Materials Testing/methods
  • Rabbits
  • Tendon Injuries/metabolism
  • Tendons/metabolism
  • Tissue Scaffolds/chemistry

Fingerprint Dive into the research topics of 'In vivo response to electrochemically aligned collagen bioscaffolds'. Together they form a unique fingerprint.

Cite this