TY - JOUR
T1 - In situ long-term membrane performance evaluation of hydrogen-bromine flow batteries
AU - Hugo, Yohanes Antonius
AU - Kout, Wiebrand
AU - Sikkema, Friso
AU - Borneman, Zandrie
AU - Nijmeijer, Kitty
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Because of the impracticality of long life time testing of hydrogen bromine flow batteries (HBFBs) under real, cyclic operating conditions, we utilized a high-frequency cycling load accelerated lifetime test (ALT) to evaluate the membrane electrode assembly performance in HBFBs. Four different membrane chemistries were tested to assess the relative long-term performance and durability of the corresponding HBFBs and to understand the main long-term failure mechanism in HBFB technology. The high-frequency cycling load ALT is a highly valuable method to assess long-term HBFB (components) stability and to understand the degradation/failure mechanism. The results showed that the utilization of long side chain perfluorosulfonic acid (LSC PFSA, i.e. Nafion®) membranes result in stable HBFB operation until a sudden cell failure at the end of the cycle life. The use of a more selective (lower bromine species crossover) reinforced LSC PFSA membrane results in approx. five times longer life times. In contrast, the use of a grafted polyvinylidene fluoride (SPVDF) membrane results in a slow incremental performance decrease (or area resistance increase) during the ALT and, again, a sudden cell failure at the end of the cycle life. After the ALT, the LSC PFSA membrane still shows high chemical stability. On the other hand, the grafted SPVDF and SPE membranes show clear membrane degradation visible as a strong decrease in IEC and an increase in ohmic AR. Gradual Pt catalyst degradation-dissolution, that results in insufficient Pt catalyst loading and subsequently low hydrogen reaction kinetics, is the main failure mechanism of the HBFBs. The membrane bromine species crossover rate is directly related to the rate of Pt catalyst degradation-dissolution and scales almost linearly with the cell total ampere-hours. As long as the catalyst loading is sufficient and does not reach a minimum value, this observed Pt degradation-dissolution rate does not significantly impact the cell performance.
AB - Because of the impracticality of long life time testing of hydrogen bromine flow batteries (HBFBs) under real, cyclic operating conditions, we utilized a high-frequency cycling load accelerated lifetime test (ALT) to evaluate the membrane electrode assembly performance in HBFBs. Four different membrane chemistries were tested to assess the relative long-term performance and durability of the corresponding HBFBs and to understand the main long-term failure mechanism in HBFB technology. The high-frequency cycling load ALT is a highly valuable method to assess long-term HBFB (components) stability and to understand the degradation/failure mechanism. The results showed that the utilization of long side chain perfluorosulfonic acid (LSC PFSA, i.e. Nafion®) membranes result in stable HBFB operation until a sudden cell failure at the end of the cycle life. The use of a more selective (lower bromine species crossover) reinforced LSC PFSA membrane results in approx. five times longer life times. In contrast, the use of a grafted polyvinylidene fluoride (SPVDF) membrane results in a slow incremental performance decrease (or area resistance increase) during the ALT and, again, a sudden cell failure at the end of the cycle life. After the ALT, the LSC PFSA membrane still shows high chemical stability. On the other hand, the grafted SPVDF and SPE membranes show clear membrane degradation visible as a strong decrease in IEC and an increase in ohmic AR. Gradual Pt catalyst degradation-dissolution, that results in insufficient Pt catalyst loading and subsequently low hydrogen reaction kinetics, is the main failure mechanism of the HBFBs. The membrane bromine species crossover rate is directly related to the rate of Pt catalyst degradation-dissolution and scales almost linearly with the cell total ampere-hours. As long as the catalyst loading is sufficient and does not reach a minimum value, this observed Pt degradation-dissolution rate does not significantly impact the cell performance.
KW - Accelerated lifetime test (ALT)
KW - Cation exchange membranes
KW - Failure mechanism
KW - Hydrogen bromine flow batteries (HBFBs)
KW - Platinum (Pt) catalyst
UR - http://www.scopus.com/inward/record.url?scp=85075162233&partnerID=8YFLogxK
U2 - 10.1016/j.est.2019.101068
DO - 10.1016/j.est.2019.101068
M3 - Article
AN - SCOPUS:85075162233
SN - 2352-152X
VL - 27
JO - Journal of Energy Storage
JF - Journal of Energy Storage
M1 - 101068
ER -