## Abstract

Rotation quaternions are frequently used for describing the orientation of non-spherical rigid bodies. Their compact representation by four numbers and disappearance of numerical problems, such as gimbal lock, are reasons for using them. We describe an improvement of a predictor–corrector direct multiplication (PCDM) method for numerically integrating the rigid body equations of motion with rotation quaternions. The method only uses quaternions to describe the orientation, so no rotation matrices are needed in the implementation. A predictor–corrector approach is used to update the quaternions each time step, such that no renormalization is needed at the end of the time step. The PCDM method suggested by Zhao and Van Wachem is improved such that forces and torques are calculated at the correct time using position and orientation information at that same time. This is achieved by using a leapfrog approach in the improved version, in which the linear and angular velocities and rotation quaternions are defined at half time steps, while whole time step information of these quantities is calculated as part of the improved integration scheme. The improved PCDM scheme is compared with the original implementation for rotational kinetic energy conservation, accuracy of object orientation and angular velocity, and rate of convergence for different time steps. With the modifications that we propose, the improved method has a true second-order rate of convergence, without the need for explicit renormalization of the quaternions. Furthermore, the method is applicable to problems with position and velocity dependent torques, while still only a single force/torque evaluation is needed per time step. For objects experiencing torque, the improved PCDM method performs better than the original method, now showing a true second-order rate of convergence, and much smaller errors in the prediction of object orientation and angular velocity while still requiring only a single torque evaluation per time step.

Original language | English |
---|---|

Pages (from-to) | 3381–3389 |

Number of pages | 9 |

Journal | Acta Mechanica |

Volume | 227 |

Issue number | 12 |

DOIs | |

Publication status | Published - 1 Dec 2016 |

## Keywords

- Numerical integration
- Rotation quaternion
- Rigid body motion
- Non-spherical particle