Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features

E/MTIC Oncology Collaborative Group, Mark Ramaekers (Corresponding author), Christiaan G.A. Viviers, Terese A.E. Hellström, Lotte J.S. Ewals, Nick Tasios, Igor Jacobs, Joost Nederend, Fons van der Sommen, Misha D.P. Luyer

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
12 Downloads (Pure)

Abstract

The early detection of pancreatic ductal adenocarcinoma (PDAC) is essential for optimal treatment of pancreatic cancer patients. We propose a tumor detection framework to improve the detection of pancreatic head tumors on CT scans. In this retrospective research study, CT images of 99 patients with pancreatic head cancer and 98 control cases from the Catharina Hospital Eindhoven were collected. A multi-stage 3D U-Net-based approach was used for PDAC detection including clinically significant secondary features such as pancreatic duct and common bile duct dilation. The developed algorithm was evaluated using a local test set comprising 59 CT scans. The model was externally validated in 28 pancreatic cancer cases of a publicly available medical decathlon dataset. The tumor detection framework achieved a sensitivity of 0.97 and a specificity of 1.00, with an area under the receiver operating curve (AUROC) of 0.99, in detecting pancreatic head cancer in the local test set. In the external test set, we obtained similar results, with a sensitivity of 1.00. The model provided the tumor location with acceptable accuracy obtaining a DICE Similarity Coefficient (DSC) of 0.37. This study shows that a tumor detection framework utilizing CT scans and secondary signs of pancreatic cancer can detect pancreatic tumors with high accuracy.

Original languageEnglish
Article number2403
Number of pages13
JournalCancers
Volume16
Issue number13
DOIs
Publication statusPublished - Jul 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • artificial intelligence
  • computed tomography
  • computer-aided detection
  • deep learning
  • early detection
  • pancreatic ductal adenocarcinoma
  • secondary features

Fingerprint

Dive into the research topics of 'Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features'. Together they form a unique fingerprint.

Cite this