Improved flux-surface parameterization through constrained nonlinear optimization

JET Contributors, G. Snoep (Corresponding author), J.T.W. Koenders, J. Citrin

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
96 Downloads (Pure)

Abstract

Parameterization of magnetic flux-surfaces is often used for magnetohydrodynamic stability analysis and microturbulence modeling in tokamaks. Shape parameters for such local parameterization of a (numerical) equilibrium are traditionally computed analytically using geometrically derived quantities. However, often the shape is approximated by the average of values for different sections of the flux-surface contour or a truncated series, which does not guarantee an optimal fit. Here, instead nonlinear least squares optimization is used to compute these parameters, with a weighted sum of squared error cost function that is robust to outliers. This method results in a lower total absolute error for both the parameterization of the flux-surface contour and the poloidal magnetic field density than current methods for several parameterizations based on the well-known "Miller geometry."Furthermore, rapid convergence of shape parameters is achieved, no approximate geometric measurements of the contour are needed, and the method is applicable to any analytical shape parameterization. Validation with local, linear gyrokinetic simulations using these optimized shape parameters showed reduced root mean square errors in both the growth rate and frequency spectra when compared with simulations based on numerical equilibria. In particular, the popular Turnbull-Miller parameterization benefits from this approach, extending its usability closer toward the last-closed flux-surface for cases with minor up-down asymmetry.

Original languageEnglish
Article number063906
Number of pages12
JournalPhysics of Plasmas
Volume30
Issue number6
DOIs
Publication statusPublished - 1 Jun 2023

Bibliographical note

Funding Information:
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200—EUROfusion). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Funding

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200—EUROfusion). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Fingerprint

Dive into the research topics of 'Improved flux-surface parameterization through constrained nonlinear optimization'. Together they form a unique fingerprint.

Cite this