Importance sampling for determining SRAM yield and optimization with statistical constraint

E.J.W. Maten, ter, O. Wittich, T.S. Doorn, A. Di Bucchianico, T.G.J. Beelen

Research output: Book/ReportReportAcademic

70 Downloads (Pure)

Abstract

Importance Sampling allows for efficient Monte Carlo sampling that also properly covers tails of distributions. From Large Deviation Theory we derive an optimal upper bound for the number of samples to efficiently sample for an accurate fail probability $ P_{fail} \leq 10^{-10} $. We apply this to accurately and efficiently minimize the access time of Static Random Access Memory (SRAM), while guaranteeing a statistical constraint on the yield target.
Original languageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages8
Publication statusPublished - 2011

Publication series

NameCASA-report
Volume1114
ISSN (Print)0926-4507

Fingerprint Dive into the research topics of 'Importance sampling for determining SRAM yield and optimization with statistical constraint'. Together they form a unique fingerprint.

  • Cite this

    Maten, ter, E. J. W., Wittich, O., Doorn, T. S., Di Bucchianico, A., & Beelen, T. G. J. (2011). Importance sampling for determining SRAM yield and optimization with statistical constraint. (CASA-report; Vol. 1114). Technische Universiteit Eindhoven.