Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms

S. Landor, A.P. Mutvei, V. Mamaeva, S. Jin, M. Busk, R. Borra, T.J. Grönroos, P. Kronqvist, U. Lendahl, C.M. Sahlgren

    Research output: Contribution to journalArticleAcademicpeer-review

    89 Citations (Scopus)


    A switch from oxidative phosphorylation to glycolysis is frequently observed in cancer cells and is linked to tumor growth and invasion, but the underpinning molecular mechanisms controlling the switch are poorly understood. In this report we show that Notch signaling is a key regulator of cellular metabolism. Both hyper- and hypoactivated Notch induce a glycolytic phenotype in breast tumor cells, although by distinct mechanisms: hyperactivated Notch signaling leads to increased glycolysis through activation of the phosphatidylinositol 3-kinase/AKT serine/threonine kinase pathway, whereas hypoactivated Notch signaling attenuates mitochondrial activity and induces glycolysis in a p53-dependent manner. Despite the fact that cells with both hyper- and hypoactivated Notch signaling showed enhanced glycolysis, only cells with hyperactivated Notch promoted aggressive tumor growth in a xenograft mouse model. This phenomenon may be explained by that only Notch-hyperactivated, but not -hypoactivated, cells retained the capacity to switch back to oxidative phosphorylation. In conclusion, our data reveal a role for Notch in cellular energy homeostasis, and show that Notch signaling is required for metabolic flexibility.
    Original languageEnglish
    Pages (from-to)18814-18819
    JournalProceedings of the National Academy of Sciences of the United States of America (PNAS)
    Issue number46
    Publication statusPublished - 2011


    Dive into the research topics of 'Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms'. Together they form a unique fingerprint.

    Cite this